
AD-A238 448 - ~i

DEPARTof. T~ENT' OFTEAIOC

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCE/ENG/91M-01

L J ,.3 1991

~3IZ3

TRANSFERING 4GL APPLCATIONS

FROM INGRES TO ORACLE

TIESIS

Adnan Altunisik
First Lieutenant, Turkish Air Force

AFIT/GCE/ENG/91M-O1

Approved for public release; distribution unlimited

91-05750/ HIIIIIIIIHIInlIII~nI~ul9 I 1 , !

REPORT DOCUMENTATION PAGE fo Approved

11. 1. -1 dIn .flA', I ()~, r*. ~ '"r~~rrtj~. m MB Ato 0104-0188

C, tix 'i K ;, t e'e. I -d orr plel,'l A Ad Mu,n . ;.I r .I-t v, s ') - ' r er'., (o ,yftt * n.tIon) I 1, b*nf sno "M 41 orl *'f ,io S A rf

1. sf6ENCY USE ONLY (Leave blank) 2. REPORT DATE J. REPORT TYPE AND DATES COVERED

I March 1991 Master's Thesis
4. TITLE AND SUiTLF . FUNDING NUMBERS

Transfer of 4GL Application from INGRES to ORACLE

(, UTHiOf(S
Adnan Altunisik, 1 Lt Turkish AF I

7. PFR:ORVIN6; ORGANIZATION N AME(S) AND ADDRESS(ES) H. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/91M-01

-J i 1Qf?(/MONITORING P.CtNCY NAME(S) A ND ADDES(ES) 10. 5PONSOING/MONITORING

Col Thom as Yax AGENCY REPORT NUMBER

AU/CADRE/WG
Maxwell AFB, AL 36112

11. 6UWPLE-WN riiW7M F)rTLs

", '' IA)N .' AJ(1 AR IL' "STATEWM"NT 12h.)ISTIIBUTION CODE

Approved for Public Release; Distribution Unlimited.

Abstract

") This paper documents the transfer of 4GL applications from INGRES to ORACLE. As a result of a fast
and conceptual change in computer languages, 4GLs were developed and evolved. These are programming
support tools whose goal is, basically, to make the programs more efficient by reducing the number of in-
structions. Both ORACLE and INGRES database systems use 4GLs to develop applications. Their 4GL
environments and their facilities for application development are investigated and explained in depth in this
effort. The TWX application, which was originally implemented in INGRES by using its 4GL, is designed
and reimplemented in ORACLE. This is accomplished in ORACLE SQL*Forms. Totally eight forms are built
to accommodate the new application. The data, itself, was easily transferred to ORACLE apriori. The TWX
application now runs on a Sun386i stand-alone computer interactively. . .

4GL, INGRES RDBMS, ORACLE RDBS, SQL*Forms, TWX Application 85

..l T.. f I I A ' I ,. I.ir)NJ,

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave Blank) Block 12a. Distribution/Availablity Statement.
Denote public availability or limitation. Cite

Block 2. Re Full publication date any availability to the public. Enter additional
including day, month, and year, if available (e.g. limitations or special markings in all capitals
1 Jan 88). Must cite at least the year. (e.g. NOFORN, REL, ITAR)

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If DOD See DoDD 5230.24, "Distribution
applicable, enter inclusive report dates (e.g. 10 Seenon Technial
Jun 87 - 30 Jun 88). Statements on Technical

Documents."

Block 4. Title and Subtitle. A title is taken from DOE See authorities
the part of the report that provides the most NASA - See Handbook NHB 2200.2.
meaningful and complete information. When a NTIS - Leave blank.
report is prepared in more than one volume,
repeat the primary title, add volume number,
and include subtitle for the specific volume. On Block 12b. Distribution Code.
classified documents enter the title
classification in parentheses. DOD - DOD - Leave blank

DOE - DOE - Enter DOE distribution categories
Block 5. Funding Numbers. To include contract from the Standard Distribution for
and grant numbers; may include program Unclassified Scientific and Technical
element number(s), project number(s), task Reports
number(s), and work unit number(s). Use the NASA - NASA - Leave blank
following labels: NTIS NTIS - Leave blank.

C - Contract PR - Project
G - Grant TA -Task
PE - Program WU - Work Unit Block 13. Abstract, Include a brief (Maximum

Element Accession No. 200 words) factual summary of the most
significant information contained in the report.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing Block 14. Subject Terms, Keywords or phrases
the research, or credited with the content of the identifying major subjects in the report.
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

Block 7. Performing Organization Name(s) and number of pages.
Adress(es). Self-explanatory. Block 16. Prie Code, Enter appropriate price

Block 8. Performing Organization Reoort code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17. - 19. Security Classifications.
performing the report. Self-explanatory. Enter U.S. Security

Classification in accordance with U.S. Security
Block 9. ansornaMonlitoflaAtory. Regulations (i.e., UNCLASSIFIED). If form
INames(s) and Address(es). Self-explanatory. contains classified information, stamp

Block 10. Spo nsorina/Monitoring Agency. classification on the top and bottom of the page.

Report Number. (If known)
Block 20. Limitation of Abstract. This blockBlock 11. Supplementary Notes. Enter must be completed to assign a limitation to the

information not included elsewhere such as: must b e ete to (nlimited) o the

Prepared in cooperation with...; Trans. of ..., To abstract. Enter either UL (unlimited) or SAR

be published in When a report is revised, (same as report). An entry in this block is

include a statement whether the new report necessary if the abstract is to be limited. If

supersedes or supplements the older report. blank, the abstract is assumed to be unlimited.
Standard Form 298 Back (Rev. 2-89)

P. I'IT/GCE/ENG/91M-01

TRANSFERING 4GL APPLCATIONS

FROM INGRES TO ORACLE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Adnan Altunisik, B.S.

First Lieutenant, Turkish Air Force

March, 1991

Approved for pul)bic release; distribution unlimited

A cknowledgmoents

I would like to thank my advisor, Maj. Mark Roth, for the guidance and support

through the course of this thesis effoit. I would dVO thank my committee members, Dr.

Thomas Hartrum and Dr Henry Potoczny. Their critiques and inputs turned on lots of

lights upon this effort.

I would like to thank all tho friends in the Oracle Contractor Area, especially David

Roliff, for their support and 'pati(-nce' on the design phase.

I would also thank all the AFIT personnel, faculty members, and my classmates.

They helped me to overcome the AFIT challenge and made these seven quarters an ex-

traordinary experience for me.

Last, but not the least, I would like to thank my family for supporting me through

these two hard years. My mother Gulten, my father Ilikmet, and my brother Adil did

a hard-to-believe job by coining to AFIT all the way from Ankara, Turkey to show their

support.

Adnan Altunisik

..................... .i............ I

J A: o,

......................-- "'- ."2"

.....

Dis t l- o,, I

Dist I ,,ve,,. .., 1.
,,I..r- j

'I

Table of Contents

Page

Acknowledgments.....

Trable of Content~s..

List of Figures v

List of Trables. vi

Abstract vii

1. Introduction 1-1

I.t Background of TWX. 1-2

1.2 Problem 1-3

1.3 Approach and Methodolopy 1-4

1.4 Sequence of Presentation 1-4

11. Fourth Generation Languages. 2-1

2.1 Fourth Generation Languages in General 2-1

2.2 Databases and 4GLs. 2-3

2.3 4GbI Facilities 2-4

2.4 4GIs in Systems Development 2-6

2.5 Analyzing Ihighi-Per-formiance 4G-L/RDBMS Application Require-

iwents 2-7

2.6 Selection Criteria For 4GLs. 2-13

2.7 4Gb, Types. 2-16

Page

III. ORACLE's & INGRES's 4GLs 3-1

3.1 ORACLE's 4GL 3-1

3.2 INGRES's 4GL 3-13

3.2.1 Fourth Generation Environment (4GE) 3-13

3.2.2 Applications-By-Forms (ABF) 3-16

3.2.3 Query-By-Forms (QBF) 3-19

3.2.4 Visual-Forms-Editor 3-20

3.2.5 Report-Writer 3-21

3.2.6 Programming Tools in INGRES 3-23

3.3 The Comparison 3-24

IV. Building The Application In ORACLE 4-1

4.1 Approach I-1

4.2 Designing The Application 4-6

4.2.1 Creating a Foim. 4-7

4.2.2 Creating Blocks 4-8

4.2.3 Saving, Running, and Testing the Form 4-12

4.2.4 Modifying the Form 4-13

4.2.5 Triggers 4-14

4.2.6 Validating Data With SQL Statement 4-18

V. Conclusions and Recommendations 5-1

5.1 Overview 5-1

5.2 Summary of Research 5-1

5.3 Conclusions 5-2

5.-J1 Recoin mendations 5 2

B illiogralphY . -

Vi ta . . .h.. T -

iv

List of F, iues

Figure Page

2.1. Progression to the 4GL (6:28) 2-3

2.2. 4GL Facilities for Production Systems(6:65) 2-5

2.3. The Model of the Prototyping Cycle(6:65). 2-8

2.4. 4GL/RDBMS Performance. 2-10

3.1. ORACLE Facili ties (6:85) 3-2

3.2. Forms Representation in ORACLE 3-5

3.3. Form Formats And Components 3-7

3.4. 001 Development Process 3-12

3.5. INGRES Facilities(19). 3-14

3.6. INGRES Application Components(18:11). 3-15

3.7. Visia1 Forms Editor in INGRES. 3-21

3.8. Reports- By- Forms in INGRES. 3-22

4.1. The TWVX Application in ORACLE. 4-2

4.2. Forms Design in SQL*Forns 4-7

4.3. Block Design in SQL,*Forms. 4-8

4.4. The APPORTIONMENT B~lock in thL Design Phase 4-10

4.5, The APPORTIONMENT Block Duiring Runtime. 4-11

4.6. A Multi-Block Screen (Page) 4-17

L of Tables

Table Page

2.1. Summary of the Languages Spectrim(6:23) 2-2

2.2. Selection Criteria for 4GLs(6). 2-14

3.1. Canonical Data Types 3-27

3.2., Canonical Features of 4GLs() 3-30

vi

AFIT/GCE/ENG/91M-01

Abstract

This paper documents the transfer of 4GL applications from INGRES to ORACLE.

As a result of a fast and conceptual change in computer languages, 4GLs were developed

and evolved. These are programming support tools whose goal is, basically, to make

the programs more efficient by reducing the number of instructions. Both ORACLE and

INGRES database systems use 4GLs to develop applications. Their ,tGL environments

and their facilities for application development are investigated and explained in depth in

this effort. The TWX application, which was originally implemented in lNGR(ES by using

its 4GL, is designed and reimplemented in ORACLE. This is accomplished in ORACLE

SQL*Forms. Totally eight forms are built to accommodate the new application. The data,

itself, was easily transferred to ORACLE apriori. The TWX application now runs On a

Sun386i stand-alone computer interactively.

vii

TRANSFERING 4GL APPLCATIONS

FROM INGRES TO ORACLE

I., Introduction

A necessary revolution is taking place in computer languages. Today, the program-

mers need to be able to instruct computers more easily and more quickly.

Any set of estimates of future computing power indicates that the productivity of

application development must increase by at least two orders of magnitude over the next

ten years (1).

As computers spread, many people who are not data processing piofessionals must be

able to put computers to work. Application development without professional programmers

is becoming a vigorous trend in computing (8).

End users should also build their own computer applications. They need languages

that are easy to use and do not require the memorization of mnemonics, formats, sequences,

and complex constructs.

The new generation of computer languages, then, needs to be much more powerful

than the previous generation so that results can be obtained much faster. These languages

are referred as fourth generation languages (4GLs).

The objectives of 4GLs (1) are to

* Greatly speed up the application-building process

e Make applications easy and quick to change, hence reducing maintenance costs

e Minimie debugging problems

* Generate bug-free code from high-level expressions of requirements

* Make languages easy to use so that end users can solve their own problems and put

comluters to vork

I-1

4GLs need far fewer lines of code than would be needed with languages like COBOL,

PL/1, and Ada to perform the same functions. They might be referred to as high-

productivity languages. 4GLs vary greatly in their power and capabilities. Some are

merely query languages; some are report generators or graphics packages; some can be

used to create complete applications; some are very high level programming languages;

some are highly restrictive in their range; others can handle a variety of applications as

well. 'In the fourth generation, much more than in the third, the languages have to be

selected to fit the application' (1).

in the scope of this thesis, 4GLs are reviewed in general. The focus in this review is

on two different ,IGLs, namely, INGIRES and ORACLE.

The rising trend of ORACLE has been waiting to be tested and proven to have one

of the best 4GLs in it., This development on the market had an effect on the Air Force as

to try ORACLE's 4GL. An application first developed in INGRES, namely, the Theater

War Exercise (TWX), is transferred from INGCRES to ORACLE in this thesis effort.

1.1 Background of TW'X

The Theater Warfare Exercise is a two sided, theater level, air power employment

decision making exercise conducted by the Air Force Waigaining Center. The decisions,

once made by the exercise participants, are fed into T\VX's air and land battle simulation

programs, which then simulate the employment of the air power. The players receive

the battle results, air/land orders of battle, logistics, status, weather" forecasts, and other

information from the computer.

The requirement for an exercise such as :'WX originated in 1976 when the current,

USAF Chief of Staff directed the (levelopmeilt of 'rigolotis courses of stully iust rict.i g

operator and planners in the ti vat and al)plication of force'. To accomplish this task,

TWX was developed in Air War College between 1976 and 1977.

The TWX databases and algorithims were intentionally drawn from unmclassified

sources and are, therefore, only 1epiesentatike of real world force postuires and capabil-

ities. The bottom line is TWY provides thu educational oppo ultUity to em ;,!oy ai power

1-2

strategies and doctrine and the principle of war in a simulated, but hopefully realistic,

situation,

From 1977 to 1987, the TWX was run on a Honeywell 6000 series mainframe com-

puter. The interaction between the game controller and the user was very limited. In

1987, two Air Force Institute of Technology (AFIP) students, Michael Brooks (2) and

Mark Kross (7), rehosted the exercise from Honeywell to a DEC Micro Vax 3600 series

computer using Zenith Z-158 microcomputers as remote terminals.

Michael Brooks and, later, Ken Wilcox (20) rewrote the game controller to allow

multiple seminars of the game to be controlled concurrently and redesigned the database

from application-specific files to a commercially available INGRES relational database

management system.

Kross developed a new input interface on the Z-158's using a fourth generation lan-

guage provided by INGRES. The new interface allowed immediate validation, feedback,

and forecast on the map.

In 198, another AFIT student, l)arrell Quick (i6), developed a map-bxsed graphical

display to replace old computer printouts. Again, in 1989, Peter J. Gordon vent into

more detail in the development of the graphical player interface. In his effort, the TWX

graphic output display interface and the forin-based in put interface were combined into

one interactive interface (5).

The TWX is currently running on a DE(' Micro Vax :600 series computer. The data

manipulation for the game is accomplished through INGIZES II)1BMS. The user interface

is written in INGRES fourth generation lanjguage (1GL).

1.2 Problem

Another database, ORACLE, has a risiiig trend on the database market in the last

decade. It has new featmies, two of which are its proced lal st ructured query language

(PL/SQL,) and fourth generation language.

The sponsor has lequest ed that the 01?,,\(I,1I? I i S lbe suhstitituted for the IN-

GRES l1l)BMS in this application. The lelalional dat,,, itl elf, is easily transferred. llow-

[-3

ever, the 4Gb applications built with INGRES need to be reimplemiented in ORACLE's

forms-based. system. This effort wvill determine a b~aseline for 4GL comparison in general

and be an opportunity to compare and contrast the ORACLE and INGRES 4GIs.

The possible benefits from this thesis effort include:

* Development of a canonical set of 4GL functions wvhich can be used to compare other

systems

e Development of automated methods to transfer ING.RES 4Gb to ORACLE 4GL.

1.3 A ppr7oach and Methodology

The implementation of the TWX in a new environment, OH1ACIE RI)1MS, has

never b~eenl realizedl before. This newv initiative is accompjlished in a sYstematic app~roach.

The approach takeni to reach the solution space is as follows:

1. The twvo dlatabase systems are compared andl contrastedl by their 'lGLs, priecedled by

a dletailedl 4ICL dliscussion.

2. The application that was implemented in INCRES RDBIMS is reviewed.

:3. The application thiat will lbc built in ORACLE is planned and dlesignled.

1 .4 Sequcice of JPrcscnto lion

Chapter 11 is a review of fourth generation languages ('ICL) in general. The

database-AI connect ion. 'I environment facilities, and all analysis for. high1-performance

'IC L/1DIMNI S appllicationi reqiiinents aile sonmc sect ions which ar icided inl th1is chap-

ter. Chiapter III is where the ORZACLE and IN IES '1GIL environments are reviewed

in dletail. InI order to create an application, the tools that are going to be usedI in these

upIplicatioils anid hlow tle\, work ar icexplai nedl ill ti., chapter. InI 'Ii apter IV, thle discus-

Sion is about tile i In plecinenta tion of T\VX inl thle OH A(LE RDB NIS. H owever, istead of

explaining the iminplemient ation (details, inl this chiapter, tihe focus is ia tlher onl 'i eating a ii

applicatioin ini () H A L SQL I l is, using" examp~lles chlosen fromn tilie TWX a pplicat ion.

Finally Chapter V is the section which concludes the thesis. Here, the work is summarized

and criticized by considering the objectives set forth in this chapter.

1-5

If. Fourth Generation Languages

2.1 Fourth Generation Languages in General

There is a. fast and conceptual change in computer languages. Today, more than

ever, computers need to be programmed more practically and quicily. There are, mainly,

two reasons for this:

1. Increasing computer power

2. Application development by end users

The first reason is directly related to an issue called software versus hardware costs.

Hardware used to be expensive but not so complex. Now, it's considerably less expensive,

however, more complex. As with the software trend, it continues to be labor-intensive.

The second reason refers to new computer users. Nowadays, not only professional

programmers, but also end users are becoming increasingly involved in application devel-

opment.

There has evolved a wide language spectrum, starting from the first generation lan-

guages. Table 2.1 summarizes orientations, uses, and product (xamples for each language

level in this spectrum.

In addition to languages, new development tools evolved to meet the software pro-

ductivity requirements. These tools aie in the category automated software development

tools, which also include programming support tools, design technique tools, and project

management tools. Among these, programming supl)ort tools automate the process of

writing applications.

Fourth Generation Languages are programning support tools whose goal is, basically,

to make programs more efficient by reducing the number of instructions. To accom)lish

this, 'GLs can (6:14-15):

* Help with application (lefinition.

2-1

___________ Table 2.1. Summary of the Languages Spectruni(6:23) ______

jGeneration Level [Orientation [-IUses Examle 3
First & Second Machine Hardware dependent * For frequent highly proprietary
(Pre-1950s Assembler (problem - ~ efficient use, for machine
& 1960s) algorithm -*example, compilers and

(Minimal over- machine opera- assem~bly
head) dions - coding) language

Third (1960s Algorithm Hardware * Numeric calculations ALGOL
&1970s) independent * Business use COBOL

(Medium cxer- (problem * General- Purpose PL/l
head) algorithm code) applications PASCAL

* Special-purpose FORTRAN
applications BASIC

Fourth (1980s) Between Mostly hardware * End-user computing NOMAD
algorithm independent e Decision support EXPRESS
and p~roblem (problem -systems IFPS
(High overhead) high level * Information center IMAGINE

algofithni code) language
* Rapid system
dIevelopment ________

Fifth (1980s k, Object. Hardware dependent * Commercial LISP
1990s) (LISP machine), but artificial intelligence PROLOG

(Mediumn over- mostly hardware systems GEMSTrONE
head) independent * Expert systems

(Object - coe . Object-oriented data-
code) base management

___________________________ __________ _____systems ________

* Permit dler, ition of data in terms mecaningfuil to the user.

* Permit thv- entry, modlification, and deletion of dlata either interactively or
fronm existing files on traditional storage mnedia.

e Provide simple ways to spocify the reports that are to be derived fr'omi the
storedl data, with flexible formats, useful summaries, and wvays to make
only suibsets of (lata available to users not authorized to see all of it.

'IGLs are beneficial for the dlevelop~ment of Systems whome program flow will chiange

frequtently. This change cani be in calculation, in ieport, or ini programn logic. Stibsta ntially,

they reduce the complexity of development cycles and dlatalbase inqjuiry systems making

software developers more p~rodutctive. Thuts, they allow software dlevelop~ers to review

system modlels with endl users to verify such items as, format and functionality of the

.system functions and il mm t/otJtu1. formats.

One of thme functions of 4GLs, which is importanit in this context, is to generate

applications. With 1GCL, the appllication creator can specify how files or (latalbass will be

upd)(ated , what Calculations, and logic are performedl, and wvhat onutput is achieved . NI a ii lie

2-2

performance is often a concern with routine data processing. Applicatiun gererators need

compilers that create optimized code modules and organize the data access as efliciently

as possible (6:20).

2.2 Databases and 4GLs

In Figure 2.1, the evolution of database systems is shown in terms of the computer

languages.,

QU IL

Figure 2.1. Progression to the 4GL (6:28)

The first commercial Database Management Systems (DBMS) were somewhat con-

nected to languages like FORTRAN and COBOL. They were dependent upon these lan-

guages for retrieving records or manipulating the database files. In the next development

cycle of DBMSs, query languages were used. These weie more user friendly in the context

that the users were able to retrieve data and manipulate files in the database by using

more undestandable constructs. These query languages were closer to natural-English.

Soon, there were many of these la nguages on the market. In response to the need for

an automated environment of query language commands, 4GLs were created. 4GLs were

introduced to the arena of l)BMS in two steps First, they were just an extra package

2-3

for the query-based languages. Later on, complete applications were built within one

programming environment using 4GLs.

When building a query-based application, it may be difficult for the system architec-

ture to anticipate all of the functionality and flexibility that will be required.

The best environment for a query-based application is where the 4GL is tightly

integrated with the DBMS. In this case, queries interact with the database more quickly,

directly, and completely. While the application evolves, the user can work with any kind

of data that is related to the application. Tight integration means that the users don't

have to learn about the new tools, because the 4GL provides all the capabilities. The 4GL

is not only a complete programming environment for the new users, but also it provides a

wide variety of programming capabilities for professional users (3).

In high-performance systems, where applications are more sophisticated and more

complex, tight integration is an important asset. Small performance gains give the user a

great deal of extra productivity.

2.3 4GL Facilities

No matter what the complexity of a 4GL product, the main idea is to accelerate

the development of computer application systems by speeding up and simplifying the

programming process. Moreover, the maintenance is expected to be easier than that of a

standard coded program.

An iieal 4GL environment has its own tools such as: database creation tools, dat!.

input tools, application generator tools, and decision support tools. Figure 2.2 illustrates

a complete 4GL environment.

The 4GL environment tools are centralized around the DBMS. Each supporting tool

has its own internal tools. These are:

* Database Creation 'fools

- An on-line data dictionary/dire(lory to SUl)port data element/field description,

record and file/database defilitiois, and maimtenmanice capabilities.

2-4

____________________Application

Database Generator Tools

Checkout ToolsI

* Data Dictionary *Qucry Language

* Data Analysis * Report Generator

* Data Modeling 9 Two-Dimensional

* Database Menu Inte'-faccs

Design Database *Procedural Language

*Interface to 3GLs

Data input
SaitclAayi

Tools *SaitclAayi
in -- - -* Simulation Modeling

Data Security

* DataInput Financial Modeling

* Spi cadsheet Package.%
* Audit Counting * Arfificial Intelligence

* Online Help----------------

*Decision Support

Systems Tools

Figure 2.2. '1GL Facilities for Production Systeins(6:65)

-Data analysis tools to monitor performance and to enhance andl analyze user

views of data.

-Data modeling and databa.,e design tools to speed up system buildig.

*Data Input Tools

- Screen design and painting facilities, the most imortant. data, inputt tools. The

screen p~ainter should create color blocks, reverse vidleo, highlightin;g, andl fields

for user data-entry.

- Data security and integrity controls which should be invoked automatically.

- Audit controls which should be easy to use and automatic. Audit coat;ols allow

ono to store a1forination on who read, createdl, ulp(l-ated, or (leleted(I hata itemifs.

2-5

- On-line Help, which the user should be able to invoke.

* Application Generator Tools

- A query language, which is required either for simple queries that display a single

record or for complex queries that display data that were projected, joined, or

searched, with various conditions applying.

- A report generator facility, which provides the user with simplified means of

generating and formatting reports. The default values provided allow standard

reports to be produced with a minimum of specifications. Custom reports can

also be designed with the use of procedures. Often the report generator can

perform simple arithmetic functions such as averaging, calculating percentages,

and finding maxima and minima.

- A graphics gcnerator, x% hich can adjust the formats, color, shading, scale, and

labeling of the graphs and help create well-defined graphical outputs.

- A Iwo-dimcnsional menu interace facility for a dialogue with the user.

2.4 4GLs in Systems Development

In the development of information systems, I preferred to trace Gregory and Wo-

jtkowski's methodology (6:131-147). They handled this concept in a very understandal)le

style in their new book (6):

The development of information systems is a. complex issue. To deal with this
complexity problem, a, disciplined approach, the classical system develol)ment
life cycle, is chosen.

The development of information systems follows a, linear process, namely, the syteli

development life cycle (SDLC). There are some applications that are highly tructured.

These have to follow a linear development life cycle which coricsponds to pr. sc(qifid

co,,puling. For these lidls of a)plications, the reqiirenients have to be .lhape(well a hcad

ofl time. On the other hand. this approach has two weaknesses:

2-6

* It takes a long time (months, even years) to develop tile system

* If the user expectations are not met, starting all over might be necessary, which costs

a lot.

To handle these problems, the prototyping approach can be used in which 4GLs play

a major role as development tools.

In its own environment, the prototyping cycle should have a developlment tool (4GL)

to quickly build the prototypes using the data resources available. Also, an energetic user

who ir ready to tackle the system problems and a prototype builder are needed. Like every

system development cycle, prototyping also has steps. In Figure 2.3, these cycles can be

seen as separate steps.

* In Step 1, the main objective is to gather enough information to initialize the pro-

totype. The user and the designer should discuss the l)rocess to provide a solid

understanding. Then, the system is (lefined with a set of data elements in their local

relationship-. At the end, a cost analysis should be (lone.

" In Step 2, an interactive prototype of the application system is built. This prototype

should meet the requirements set, up in Step 1.

" The purpose of Step 3 is to refine the initial requirements by using the working

prototype, This follows the question 'Is the user satisfied?' If the answer to this

question is 'yes,' then the working prototype is improved for a, final product.

" If the answer to the earlier question is 'no,' then Step 1 is realized. The working

prototype is refimted, revised, enhanced, and Step :1 is repeated. This is where the

available fourth-generation techmology is use(l to ad vaitage.

2.5 Analyzing ligh-Perfornwncc 4GL,/!?DBi'lS Apphcatwn lhquimnlIcnts

'lligh-performance' applications differ from the others in some natures. They are

larger in size, complexity or scope. Im odei to make a healt hy (hoice aboiit the* .tGL/R DBMS,

a iobust analysis i. n:,(essary (3).

2-7

* Proposal Definition

STEP 1 * Feasibility Assessment
* Scope of Systemn
0 Estimated Costs

STEP 2 eoptile
111ti,,Prototype

ntial Prototype

L TEPo3otyePSotitfie? Srototyp

SprtEPna Y es te Uns r -i.Iiaiice
thei Prototype

Figure 2.3. The ModIel of the Prototyping Cycle(6:65)

T1'le analysis should, first, take the user/developer nteeds into consideration. Second,

to make full use of thte software throughout, the lifecycle of the application developmient,

software prodlnct evaluation is imiportant for thle selection of this software.

Thle TWX application is dleemledl to lbe a. hight-performtantce one, Today, most, ap~pli-

cations use both '1Gb and an RDBMS. Thte I1GL aid RI)IMS, together, can be usedl to

create different ap~plications in different 'omflplexities.

The expectations from a spedftc '1GL for a high- performnan ce appl)ication are (3):

2-8

9 Developer ease-of-use: From the developer point of view, the 4GL should be easy to

develop applications.

* End user ease-of-use: From the user point of view, th system created via the 4GL

should be easy to use, consistent in the flow of opera.tion.

* Quick in querying: The queries should be performed quickly by meeting needs for a

comprehensive query traffic (the queries could be complicated).

9 Comprehensive query needs: It should be capable of manipulating a loaded, complex

database.

9 Flexibility to quickly tailor operations: To be able to alter the operations for the

specific needs of the application.,

9 Permits data, manipulation: Like deleting, altering, inserting or updating the current

values in the database.

e Reqaires tight integration of 4GL and RDBMS.

A needs analysis is neceF..ary to make a good decision about the 1GL and the

RI)BMS.. There are some points that should be considered. These are:

e ,IGL/RDBMS Ratio

From the items above, the last one is somewhat dependent on the prevailing circum-

stances. When a 4GL and a RDBMS are combined to be used together, the question

of the ratio comes up: How much RI)BMS, how much 'GL?

,G L is used for its powerful commands to manipulate the data. On the other side,

RDBMS is used for storage and retiiev'il capabilities. When the application is ex-

pected to include the new operations or the sophisticated data in the future, then,

for the flexibility of the application, the 4GL must provide a wide range of reporting

options (3).

The ,1GL must also provide an extensive set of commands aid a development tool

for tile developer. These two are also necessary for the maintainers.

2-9

Another issue about the discussion of 'how much 4GL a.nd how much RDBMS' is

the expected capabilities of RDBMS. Data security, access by multiple users for

multiple purposes, and integration with other software and interfaces all combine on

the relative capabilities of the RDBMS (3).

e On-line Transaction Processing vs Queries

On-line transaction processing (OLTP) and query based systems are two main classes

in today's 4GL/RDBMS applications (Figure 2.4). Essentially, most of the applica-

tions make use of the two classes.

Product,

Performance

Transaction Hybrid Query
Environ menit Envirowen etini roll ment

Application Type

e e () E- High performance tiansaction based system

lybfid system

lIigh-Perfomniancc query based system

Figure 2.A. , DB,/i 1)3MS Performance

2-10

These two systems are, in effect, different in both desig, :-nd operation. In OLTP's,

also known as the transaction-based systems, the main functionality is that a small

amount of data is updated very often. On the other side, query-based systems are

optimized for dynamically selecting data that satisfies the user's requests and his

complex query conditions.

A needs analysis has to be done before the purchase of the product. At the end

of this analysis, the application will be classified whether it is a query-based or a

transaction-based. This analysis, in turn, becomes the most important criterion for

making a decision on the product evaluation. The TWX, the application which is

in question for this thesis, is a hybrid one between these two classes. To make the

distinction, one must look at the details of these two systems.

Transaction-Based Application Characteristics:

Transaction-based, or OLTP, systems are commonly used in high-volume disk read/write

applications such as automatic bank teller machines and airline reservations. These

systems require instantaneously updated information, in tasks such as:

- Updating huge databases quickly and accurately.

- Handling a lot of reads and writes which are not really complicated.

- Executing fixed comman(ds that are not under the direction and control of the

cutd user.

The functionality, itemized above, is easily accoli)lished by this kind of system.

Hlowever, when the queries starts getting conmplicated, it takes quite some time to

execute these in transaction-based system.

Query-Based Application Characteristics:

Since the-e systems are mainly involved in sophist icated querying, they aine often used

in the scientilic area. hlige aniotnts of data. imust be ietimeved, studied and inanil)-

ulated. Flexibility and the speed of operations are the two iiportant requirements.

Hfigh performiance query-based systems must:

2-11

- Navigate through the massive amount of data and provide complex operations

to gather the data not just from one source but from many.

- Provide flexibility for applications future enhancements.

- Have a nice interface for the user, so that he learns the fundamentals of the

system easily.

- Provide access to needed development tools including debugging.

- Integration of the system with the other environments such as PC or linker so

well that the 4GL/RDBMS is the center of the entire system. This is specially

desired in multi-user environments.

Performance Demands: By definition, high-performance 4G L/RDBMS applica-

tions demand extra performance from the CPU, from storage and software function-

ality. A complete analysis should be assessed about the high-performance software

application. The following criteria are listed in a clean-cut way in order to clarify

the application needs (6):

- Size of database: The number of records per dataset and the number of datasets

per database.

- Data Dimensions: The number of characters to occupy a single field.

- Data Types: The data types that are allowed.

- Expected Retrieval Requirements: Like speed.

- Query Requirements: If queries are lengthy and complex, if they reference pre-

vious commands, if queries are executed by programnners or end users...

- Reporting: If simple/complex reports can be generated through from a, screen-

based environment without any additional commnanlds, if these reports can be

programnined and compiled into applications...

- Integration: If the users are familiar with the operating system, if the commauids

are not too different from the coniventional ones, if integration with module. is

required for processi 1g, a nalysis or reportinig.

2-12

- Application Growth: If needs change in the future, if the database can grow

without affecting applications, if applications can grow regardless of rebuilding

the database.

2.6 Selection Criteria For 4GLs

INGRES and ORACLE RDBMSs are joined with ,1GLs to produce powerful appli-

cations. Choosing the right 4GL is important to achieve the maximum productivity.

The Fourth Generation Languages differ in options, efficiency, reliability, and cost.

A well-planned, carefully executed selection improves the chances of finding the right soft-

ware. In their book (6), Gregory and Wajtkowski explain the evaluation phase:

Evaluation: The primary objective of tie evaluation is to identify the 'critical'

factors which make the distinction between an appropriate and an inappropriate language.

These factors are listed in Table 2.2.

2-13

Table 2.2. Selection Criteria for 4GLs(6)

USER. NEEDS APPLICATION NEEDS
.......................... ° °.........................

User friendliness
Menus and prompts Hardware & Operating Systems
Integration across m odules ...
Default Report Formats Mainframe, mini, macro
Help facility compatibility
Clear error messages Operating system compatibility
Full screen data entry Resource use: CPU, Memory,
and editing storage
Novice and expert mode
(procedural and non- Comnunnication Linkage
procedural m ode) ..
Supports prototyping Other databases
Clear and Ielpful Special-purpose software
Documentation Other computers
Initial license, installation Costs and resource usage
and annual costs

Vendor Support Language

User training Procedural/nonproced ural
Applications consulting Compiled/interpreted
Hotline and technical support Customized menus, prompts,
Product u pd ates forms, varnings, ciiors
User groups messages and reports
Number of installations Standard symbols and conventions
Time-sharing access Common and user defined
Efliilency and reliability functions
Data
Suoppoi t cost Data Managenment
Pricmag St h uct mre

Data dictionarv
Cor111n1 DBMS
Data types
Simultaneous access
Data security

2-1'1

The critical factors are actually extracted from the following set of groups:

User Needs:' User needs should be met depending on the user's level of knowledge

about the system. For a novice user, this is most critical. On-line help and built-in tutorial

help the novire users find their way. If the user is an experienced one, 4Gb must offer tools

and have the power of a procedural language.

A 4GL should support prototyping as stated earlier in this chapter. This will en-

able the user to interact closely with the system during the design and testing stages of

the applicatioa development cycle. A 4GL should produce documentation for the appli-

cation, including specifications, documenting history of changes, and different versions of

the application reports.

Application Needs: The language should not only satisfy the user's needs, but

also satisfy the application needs:

* The language should have compatible code.

* The language should include some processing facilities depeflding on the intended

application. These processing facilities call be programnming loops, array processing,

computational functions, type of databases and files....

Efficiency: The language's efficiency will be different from one operating system to

another operating system, For this reasoli, the language's efficiency characteristics must

apply to the appropriate operating system.

The language's efficiency, the number of users, the size and nature of the applications,

and the desired response time deterniine the need for the resources.

Hardware requirements: The 4GL should be flexible enough to work unlder var-

ious hardware and/or software environments. The laiguiage should meet the needs of the

enviromnent, instead of forcing the eiivironimieiit to adjlist to suit the langu age. Silice there

ate illiiiy PC usei s, he' language' should ,lowv I l' PC ucl to qIleimy anid e.\t I act Iiiaiiifraie'

data, download the data to the PC. amid mauipulate the data locally with hie staidard PC

tools or wit]) a PC version ofthe Imai lframe language. Or he should be able to design the

applicatioii aiid later upload it to the iuaiifianie

2-15

2.7 4GL Types

Mainly, there are two'types of 4GLs on the market:

I

1. Application Programmer 4GL:

This type of softwarelis used by the data processing departments of many business

organizations. It is used to develop transaction processing systems or large databases

in the mainframe environment; that is, it is used for company-wide systems.

Most of the time, the installation and the use of tools associated with products in

this category require a highly technical staff. Usually this software is very procedural

and too complex for most end-user computing. Its use needs some extensive training.

ORACLE is an example of this class. Some of the ORACLE products can be used

by application programmers as well as by highly trained user-developers.

2. General-Purpose 4GLs:

There are two categories of products in this group: those that comprise both DBMS

and a 4GL and thosc that do not have a proprietary BIMS.

DBMS/4GLs are often called the development/information center 4GLs. Some are

use(l by professional programmers only; others can be used for del)artmental coni-

puting by the end users as well. INGRES is an example of this class.

ORACLE and INGRES systems are explained in detail in the next chapter.

2-16

III. ORACLE's &, INGRES's 4GLs

3.1 ORACLE's 4GL

ORACLE is a distribute(] relational database system created by ORACLE Corpora-

tion of Belmont, California. Versions of ORACLE exist for micro, mini, and mainframe

systems. ORACLE's first commercial release was in 1977 and as of this writing, the product

is at version 6.0 (19).

The type of 4GL that is being used by ORACLE is for application l)rogrammers.

This is mainly used to develop transaction processing systems or large databases.

ORACLE evolved into a 4GL product that can run on a variety of mainframes, minis,

and personal computers. It supports a large number of operating systems such as MS-DOS,

UNIX, VM/SP, and VMS. The ORACLE system structure is shown in Figure 3.1.

Fourth Generation Environment (4GE): SQL and the relational database model help

the application designer to create their work. But, SQL doesn't satisfy the application

dewlopment requirements. It (loesia't have the capability of formatting conditional proce-

dures, and advanced data validation routines/functions whiclb jus' ,e supplied by ai)i)li-

cation tools put on top of SQL. On the other side, SQL provides the transition plhase to a

Fourth Generation Environment (,IGE)(4:6-7,289).

Figure 3.1 also includes the complete ,tGE tools in ORACLE. The major tools inl this

environment are explained below.

Application Development:

As David Pepin defined application in his book(15:353):

An application is a set of functions working together to perform a specific task;
described physically, it is a, collection of programs, tools, and titilities that
interact to perform a specific task.

In ORACLE, a large collection of tools and pro(licts allow application developers to

create almost any type of application. One of three methods are used depeldiling Ol the

tools available and the type of functions whi(:h are neede(I by the application:

3-1

ORACLE DataSL
Database Dictionary

Data Processing

*SQL*Connect

End-Users -0 SQLf*Forms Programmatic

Easy*SQL * SQL*Report * Precompilers
SQL*Graph 9 SQL*Meiiu a Subroutines
SQL*Galc * SQL*Design * Gall Interfaced

Figuire 3.1. ORtACLE-' Facilities(6:85)

" SQL,*Pliis

* A high level language

* SQL*Formis

Most of the applications ex1)loit these thr-ee miethods at the(, samne time. Buit, scveiral

factor-s allow each of these pr-oduicts to l)e the I)asis for- ani enitire application: each can

cr-eate a shiell that calls externial miodilcs of similar anil (lissimlar- co(le front withini the

shell; each cani interact (irectly with the uiser; and~ each cani iter-act dIirectly with the

ORACLE datab)ase(1.5).

Aiu enitire al)I)iicatioi (lone comipletely ini SQL,*lhIus is rarev])tt miay I)e niecessary

wheni SQ1,*Foriiis or- a ighl-level laniguag OIZACLE initerface is niot available. llowever-,

3~-2

SQL*Plus-based utilities are used in parts of many applications.

On the other side, there is a great advantage in developing an application based on

SQL*Forms. Because, it can be .ransferred to t variety of mainframes, minicomputers,

and microcomput-rs with no changes. Also, an entire application package can be created

using SQL*Forms.

A cost-saving advantage of SQL*Forms is that. a prototype can be created rapidly. In

the time it takes to create a single form using a 3GL, the prototype of an entire application

can be created. The prototype can also be used as part of the final product with some

additional triggers (a trigger is a set of commands that are executed at, or triggered by, a

certain event when a form is run)(15:378-405).

3.1.0.1 SQL*Forms SQL*Forms lets the application (leveloper to buil forms-

based applications quickly for entering, querying, updating, and deleting data. Using

simple menus and using the p)owerful screen painter, the application needs are specifie(.

SQL*Forms then combines the instructions with information from ORACLE's data dictio-

nary to generate the application.

SQL*Forms gives the ability to:

" insert data into the database by tyl)ing the data directly into the fields

* view, update, or delete several records on the screen at one time

* type query conditions (irectly into the fields to be queried.

For example, the following SQL Language stalements will insert a set of data into

the database:

INSERT INTO ORD

VALUES (610,'07-JAN-87','A'i0l1O8-JAN-87',1O1.4)

INSERT INTO ITEM

VALUES (610,1,100860,35,1,33)

3-3

SQL*F'orins can display the data. that is not in any databaze but is calculated oil thle

basis of data storedl in the dlatab~ase. One call generate data that records suich things as

the time, date, or operator associatedl with each change to the database.

Understanding the Basic of the Forms:

Below are the lbasic dlefinitions th.'it are needed to know to wvork successfully withl

SQL*Irormis.

" Page: Thle part of the form that is seen onl the screen. A form canl have many page's.

* B~lock: Data and text that corresp~ond1 to one(table in a dlatabase.

" Base Table: Thie table onl which a block is based.

" Record: Data from one row in a tale.

* Field: A highlighted or undlerlined1 area. onl the screen that canl (display a value. Thle

value usually correslponus to a value from a column in a (database table.

* Single-Record Block: A block that can (display only one(- recordl.

" Multi-Record Block: A b~lock that ran dlisp~lay more than one record.

" Vlune: Ani iteni of informi on in a field.

Thle formns in Figiv e3.2 bAowsth diee blocks onl the samne page. Block, fields, and

recordls are shown onl the miargini selparately.

The stepIs which shun I11d he fol lo~vcel to accomiplish the goals in building the application

call 1) outlined as follow.":

*Clarify the goals that are going to be acieved.

* lDeterine wviich tables will be ulsed ill thle form.

" D~etermnine thle blo ks a particular form will contain.

" D~etermnine the ordler in w hicidi the blocks are going to 1)0 laid out in a particular form.

The order of the blocks can be sequenced for thle ease of the opera tor first. Thlenl. it,

canl be chlanged.

DAY :0- 2ATAF DEFENSIVESUPPRESSION MISSION INPUT__

Blo c CYCLE: DAY__

SIDE : BLUE

MISSION LINE # :11501_1

Fie ldI

MISSION AIRCRAFT AVAILABLE AIRCRAFT

TYPE ROLE SORTIES TYPE ROLE SORTIES

ill__ 11 A
____ -AV8 A- DT__
___ _ ____F16- A

___ ___F4 A 1

Re c o r d: s TORA- 35

Figure 3.2. Forms Representation in ORACLE

3-5

* Use the Default Block capability to build a, rough dIraft ol the form.

* Modify and re-size the dlefault fields and create newv ones until all thle Jidl(s that are

needed are created.

* Enhance the formn visually by adlding text and highlighting certain parts of the formi

with boxes and liles.

* Add validation chiecks and supply default values and other fiids criteria,

e Define triggers. A trigger is a set of comniandls that is executed at or 'triggered' by

a. certain event when a formn is run.

Test the form coftQnl-SQTJ* FormIs is dlesignedI to p~ermit convenient testing of it formn

in design phase. Diagnosing errors as soon as possible mnakes the form design easier.

3.1.0.2 SQL *oiin (Yonponcids The corn ponents of SQL* Foris include:

*SQL*Foins (also called IAD), the Interactive Application Designer, which creates.

or modlifies the form in the (database. It is thle main component wvhich canl call the

others. It is also executedl when CREATE or MOD)IFY is chosen from CHOOSE

FROM window.

*SQL*Formis (Con vert)(also c:al led IAC), the interactive application converter, wvhich

converts a form betwveen database andl INP format. It is executedl when GENERATE

or LOAD is chosen from the CHOOSE FROM window.

e SQL*Fornis (Generate)(also called IAG). the interactive appllication generator, ieads

anl INlP file and generaltes at FRIM file andl runs it. It. is executedl when RUN is chosen

fromt thle CHOOSE FROM window.

As illustrated in Figure 3.3, thme (designer can use components of SQL,*Fornis to

convert fromt one forniat to anot-her.

39.1.0.3 Tviggcrs A Iriggcr is at set of SQL*Forms coninands peculiar to OR?-

ACLE that are execuited at, or triggered l h. a erinevent whienl a forml is Inlilt. Thycall

be used(to Valid(ate, assist, anid eim Ii aii e what, (t(Oiero)ia tor ('utel's oil thle formIl.

31-6

IAC

.INP fih (Database

lAG

SQL*Forin

.FRM file

RUN FORIN

Figure .3.3. Form Formats And Components

riggers ho01(the key to much of SQ1,*Forms'power and1 also much of its comp~lexity.

Although writing the triggers is not like convenmtional p~rogramming, it can be very complex.

Trigger events can be associatedl with five kinds of events:

* cntry- wvhen the operator first runs a form or when the cursor enters a new block,

record, or field

* query--before or after recordls are retrieved

* changc-after the operator cbla ges ai valu ie, or b~efore or after inserted, updated, or

deleted recordls are comnmittedl to the, data base

* exit--when the op~erator leaves a forum or when the cursor leaves a block, record,or

field

* keys17-okes-w~hen the operalor prIesses a functon key.

3-7

There is an other kind of trigger that is not triggered by a specific event at all. These

are user-namned triggers-common triggers or subtriggers that can be used or calledl fromn

other triggers.

The Structured Query Language, SQL, ic the k-ey method working with data in a 4GE

environment. In addition to the iormal dlatabase operations, SQL commands in triggers

are used to:

* place data in fields of a form

* p~erforml calculations ol (data in a form

0 reformat (data in a fom i

* check- whether (data exists inl the (database

* compare (data in fields of a. form.

With oil((diference and two extensions, SQL commands iii triggers are virtually the

same syntax as SQL commands inl other ORACLE products. Tile major syntax differunce

is thiat SQL, commands in triggers do not endl with a semicolon (;).

It is wise to test the SQL commands before thle.% are placed ill triggers. In general1,

any SQL command can b~e used in trigger. Hlowever, there are sonic warnings.,

e 'SELECT' commands may only be used in a post-change tiigger (a kind of trigger

tha. is only activated when thle v'alue of a field is chanlged).

e D~ata, modlification conmnands (INSERZT, UPDATE, andl DE, LETE) may only be used

ill comimnit (pre- and post-insert, ulpdatic, and dlelete) triggers.

e If INSERT, UPDATE, or DELETE commandls are used to muodlify a b~ase table for

a block iii the current form, it is necessary to uildaue anly (at a that, iight be onl the

forum.

\'N'lleli thle opera tor' wanits to delete, insert, or umpdIate a re~ 01(from a block, that

b~lock has to belong to a table inl thle dlatilbase. AS nel t iolledl before. each tablHe Sion Id

correspond to a base-table in the database. This is necessary to make the changes to the

databas-e. If this wasn't the intention, the designer would not have to choose a base table

for that block.

Although it might seem to be a problem, there is a solution to this. If, on the same

page, there are several blocks together at the same time, and if the %,alue of a field in one

of these blocks which has a base-table in the database has been changed, another field

in another block can be changed and committed too (the second block not having a base

table).

3.1.0.4 SQL*Plus SQL*Plus is a fourth generation language (essentially SQL

with additional features) designed to manage all interactions within ORACLE. It allows

the operator to create, modify, and join database tables; control database access; create

reports; and transfer data among ORACLE systems distributed on different computer

systems.

ORACLE's version of the SQL language, SQL*Plus is the most functionally complete

and powerful SQL in the markrL. SQL*Plus has outer join, hierarchical structuring, output

formatting, minus/difference and date/time operators, as well as a. formidable selection of

row functions such as standard deviation, soundex, and null value replacement (6).

Trhe SQL*Plus program can be used with the SQL database language and its pro-

cedural language extension, PL/SQL. The SQL database language allows the operator to

store and retrieve data conveniently. Through SQL*Plus, one can:

* enter, edit, store, retrieve, and run SQL commands and PL/SQL blocks

a format, perform calculations on, store, and print ouery results in the form of reports

* list column definitions for any table

* access and copy data between SQL databases

send messages to and accept responses from an end user

PL/SQL programs (cailed blocks) can also be used to manipulate (la a in ie data base.

PL/SQL blocks begin with)ECLARE, BIE1.GIN, or a block name. SQ(,l1us treats

3-9

PL/SQL blocks in the same manner as SQL commands, except that a semicolon (;) or

a blank line dloes not terminate and execute a block., One can terminate PL/SQL blocks

by entering a period ()by itself on a, newv line. Below is an examp~le of how a. PL/SQL

block looks:

SQL> DECLARE

2 * NUMBER 100;

3 BEGIN

4 FOR I IN 1-.10 LOOP

5 IF TRUNG (1/2) = 1/2 THEN --I is even

6 INSERT INTO temp VALUES(I,X, 'I IS EVEN');

7 ELSE

8 INSERT INTO temp VALUES(I,X,'I IS ODD');

9 END IF;

10 X := X + 100;

11 END LOOP;

12 END;

13.

One major difference between the ORACLE and INGRES SQL is that ORACLE

allows the use of variables to btore table namnes. This enables the SQL 'fm'oin' statements

to be loaded at runtimne (for example after the team's affiliation is known ini TWX). Thle

p~rimary adlvantage of using variables is that the size of the SQL codle can be cut in hialf.

3.1.0.5 5QL *1?epo7I 1117*ci' S QJ*RepIoIrtXri ter is a. general J)urpoSC tool for-

developing and executing reports, specially designed for application developers who k nuwv

the SQL language. With the SQL,*Report Writer, one can:-

* combline multi ple SQL st atemients in a. single report to easily dlefine comiplex rela-

tionsi ips

0crea Ic ad(hoc report,, usingi a richi set of (lefaults

3-1t

* performs complex calculations

* run reports interactively or in production environments with flexible runtime param-

eters

9 fully customize all parts of the report definition.

In order to build reports successfully with SQL*ReportWriter, these steps should be

followed: First, the Action choice is selected from the Main menu and New is selected

from the pull-down menu.

The next step is to define one or more queries. Queries enable the user to specify

the data lie plans to use. Ile can access data from one or more tables residing in one or

more databases. tie can use multiple queries in a report, and he can create relationships

between them. This is also a good time to enter a comment describing the purpose of the

report, and at the same time to define the page size and margins.

Once the queries are defined, the user can use group settings to specify where groups

of data from the queries should be placed in the report. One can think of groups as a tool

to perform 'coarse' or overall placement of data in the report.

3.1.0.6 Programming Tools in ORACLE The programming interface allows

application programmers to access ORACLE from within third-generation languages. This

interface supports languages such as COBOL, C, BASIC, FORT!AN, Ada., PL/1, and

Pascal.

SQL is a non-procedural language. That is most statements are executed indepen-

dently of preceding or following statements. The non-procedural nature of SQL makes it

a very easy language to learn and to use.

On the other hand, 3GL languages like C, COBOL, or FORTRAN are procedural.

That is, most statements are exectted depending on proceeding or following statements

through such constructs as loops, an(d conditional control st-atenients. Tic procedural

nature of these languages makes them very flexible.

The ORACLE Call Interfaces, OCIs allows the user to write applications that take

advantage of both the nlion-)roce(lural capabilities of SQL and the proced irual cal) ili ties

3-11

" performs complex calculations

" run reports interactively or in production environments with flexible runtime parani-

eters

" fully customize all parts of the report definition.

In order to build reports successfully with SQL*ReportWriter, these steps should be

followed: First, the Action choice is selected from the Main menu and New is selected

from the pull-down menu.

The next step is to define one or more queries. Queries enable the user to specify

the data he plans to use. He can access data from one or more tables residing in one or

more databases. He can use multiple queries in a report, and he can create relationships

between them. This is also a good time to enter a comment describing the purpose of the

report, and at the same time to define the page size and margins.

Once the queries are defined, the user can use group settings to specify where groups

of data from the queries should be placed in the report. One can think of groups as a tool

to perform 'coarse' or overall placemcnt of data in the report.

3.1.0.6 Programming Tools in ORACLE The programming interface allows

application programmers to access ORACLE from within third-generation languages. This

interface supports languages such as COBOL, C, BASIC, FORTRAN, Ada, PL/I, and

Pascal.

SQL is a non-procedural language. TILat is most statemcntU are execute([indepen-

dently of preceding or following statements. The non-procedural nature of SQL makes it

a very easy language to learn and to use.

On the other hand, 3GL languages like C, COBOL, or FORITRAN are procedural.

That is, most statements are executed depending on proceeding or following statements

through such constructs as loops, and conditional control statements. The procedural

nature of these languages makes them very flexible.

The ORACLE Call Interfaces, OCIs allows the user to write applicationls that take

adva.ntage of both the nou-procedural capabilities of SQL and the procedural capabilities

3-11

of a 3GL. These applications can be more powerful and flexible than applications written

in either the host language or SQL alone.

The OCIs allow the user to communicate with ORACLE through a subroutine library

supported for several high-level programming languages As Figure 3.4 shows, the user

compiles and links an OCI program in the usual way.

PROGRAM

COMPILER

OCI
LINKER RUNTIME

L IBRARY

Figure 3.4, OCI Development Process
(13)

The OCIs support all SQL query, data manipulation, data definition, and data control

facilities that are available interactively through SQL*Plus.

3-12

3.2 INGRES's 4GL

INGRES is a distributed relational database system offered by INGRES Corporation

of Alameda, California. Versions of INGRES also exist for micro, mini, and mainframe

systems. However, INGRES is written in the Assembly language of the target system, and

is available on fewer machines and operating systems than ORACLE(19).

Being different from ORACLE's 4GL, INGRES uses general purpose 4GL. Under

this, there are two categories: the ones that combine both the DBMS and 4GL and the

ones that only have a 4GL., INGRES has both of them: A DBMS and a 4GL. In INGRES,

4GL is more visible to the application programmer/designer, so that, a separate block can

be seen for INGRES 4GL. The advantages of ,lGL in INGRES is more or less the same as

the ones in ORACLE. The INGRES facilities can be seen in Figure 3.5.

3.2.1 Fourth Generation Environment (4GE,) Primarily, the INGRES 4GL speci-

fies the menu operations by controlling the user's movement among the frames and pro-

cedures of an application by forms (ABF) (Figure 3.6 illustrates the INGRES applicaticn

components in 4GE). Besides the operations that manage the applications, the INGRES

4GL can combine some certain operations with each frame (a frame contains a form and

a menu; it's the basic element in an ABF application) in order to access the database

directly and to control the form that displays the data(17:3-15).

By using INGRES 4GL, users can(17:,l-6):

* Access the database to retrieve , append, or update rows

* Manipulate forms by specifying initialization, defining field and key activations, and

setting field attributes

* Perform calculations on items in the form, whether displayed on the screen or not

* Call other frames, INGRES 4GL procedures, INGRES modules, or the operating

system

* Use hidden fields for calculation or data that the user does not need to see

* Carry out mnulti-row (lueries with submenns

3-13

Interactive SQL EMBEDDED LAN QBF

INGRES/STAR, INGRENT

OPEN ARCHITECTURE
Structured Query Language

INGRES/MEN ABFR

OPTIMIZER, DICTIONARY

DISTRIBUTED DATIABASE,

VIFREDEMEDD7Q

!NGRES 4CL VISUAL QUER ~ OT IIIEll

Figure 3.5. INGRES Facilities(19)

e Performi selective processing on the table fields

Application Development: The INGRES facility for creating customnized, formns-

based applications is Applica tions- By-Florms (ABF). An ABF uses standlardl INGRES formis

andl menus to access a dlatabase and Iperforni a series of operations (such as q.tcries, up~date

andl rep~orts). Using ABF one can (define, test, and] run fully dlevelopedl appIlications without

having to use a conventional programnming language.

Applications-By-Formns lets the user create an application without having to worry

about the location and mnanagement of source files, object files, linkage lprogranis, comi-

pilers, editors, and the other tools of conventional Iprograinlniug. A13F uses INGRES

usei in terfaces such as the Visual-F ormis-Edi tot-, Query-fly- Fornis, a iid(Report- By- Forins

.3-14

User specified Frame

QBF Frame VIFRED Database Tables
I Customer

u b s y s t e mP r o d u c t
Table

Report Frame DefaultFormas Order

I ']Table

--- -- -- Report |
Writer Cod

Graphic Frame

tVIGRAGHt

Figure 3.6, INGRES Application Components(18:11)

to create a sequence of forms and reports that will let the application users manipulate

the data, in a convenient way. The user of an INGRES application normally needs to

access database table information on the frame, then lets the user chose the kind of data

manipulation required.

In developing the application within ABF, the designer uses INGRES 4GL to specify

the applications' general structure and to define any custom processing steps that the

application uses. lie designs the overall flow of au application in a sries of consistent,

easy-to-use menus. He can then fine-tune an application by indicating what is to happen

when the application user chooses a menu operation.

3-15

The form is the input and output medium for a forms-based application, and a large

part of any forms application involves operations that get data from and display data to

the form. INGRES 4GL makes such interactions easy to specify and uses the form as all

integral port of the 4GL specification.

In INGRES 4GL the designer can code statements based on either of the INGRES

query languages, SQL or QUEL, to access and manipulate the database. Procedures

accessed through the 4GL activations can be written in 4GL itself or can be based in

standard programming languages such as C, Pascal, and others. For additional flexibility,

these procedures can include embedded query language statements (Embedded SQL or

EQUEL), providing easy access to the INGRES database at all levels of programming

endeavor.

One of INGRES 4GL's major strengths is incorporating the power of ANSI Stan-

dard SQL and Embedded SQL into itself, thus greatly reducing the need to call separate

embedded language)rocedures from ABF.

An important point to remember hero is about the language to be used in developing

the application. The designer can only use one language inside an application. lle can not

mix it with the other one.

3.2.2 Applications-By-Forms (ABF) ABF is the INGRES facility for creating cus-

tomized, forms-based applications. An ABF application uses standard INGRES forms and

menus to access a database and to perform a series of operations such as queries, updates,

and reports. ABF uses user interfaces such as the Visual-Forms-Editor, Query-By-Forms,

and Report-By- Forms to create a sequence of forms and reports.

ABF has several distinct advantages for application development:

" A code manager for all files related to an application

* A dynamic test environment

• The use of INGRES modules

" The use of INGI lES 4GL for custom processing

3-16

e The need for fewer lines of code than in conventional programs

ABF automatically provides access to the system editor and to the Visual-Forms-

Editor as the elements of the applications are created.

ABF supplies a test environment for the applications, The applications can be run

and debugged before they are actually defined. ABF provides default actions if an unde-

jned object is referenced. This environment allows the small pieces to be tested.

By using the readily available blocks, new applications can be created easily. The user

can also use queries, forms, and report. by linking them together. lie can also incorporate

INGRES modules such as Query-By-Forms, making INGRES tools directly available to

the dpplication developer(17).

An ABF application may include these components:

* Frames: The basic operational units of an ABF application. The end user interacts

with the application through forms and menus defined within the frame structure

* Procedures: Separate modules of INGRES 4GL or a host language code that perform

specific operations

* Tables: Database tables containing data on which the application operates

* Reports: Data formatted for the display or printing

* Graphs: Data presented in a visual, graphics format.

Frames: Central to each ABF application is a collection of related units called

frames. An application is composed of frames. Frames let the user manipulate the infor-

mation in a dat-.base. A fram visually consists of a form, which can be considered the

equivalent of a form on a piece of paper, and a. menu of operations through which the user

can query the database, run repoits, ase INGRES user interfaces, run operating system

programs, and perform other tasks.

There are four types of frames:

* User-specified frames: Custow frailues Created by the application developer

3-17

* QBF frames: Frames that perform database queries using Query-By-Forms

e Report frames: Frames that display or print reports

e Graph frames: Frames that display graphs

For each user-specified frame, the designer must create an INGRES 4GL specification

defining each menu operation along with statements that determine what happens when

the user chooses each operation. In an INGRES 4GL specification, the user can start up

other frames, run INGRES user interfaces, run external applications or system programs,

display his own help files, and performs specific data manipulations. lie uses the system

editor to create the INGRES 4GL file, which Applications-By-Forms stores for him in the

directory he chooses for source code files. Being different from ORACLE, since there is no

concept as 'base table' for each 'block', the update, insert, and delete statements can be

used anywhere in the frame.

Whenever the designer infludes a QBF frame in an application, he is specifying that

the application use Query-By-Forms to access the database. When defining a QBF frame,

the designer might specify or create the table of JoinDef (join definition) and the form

with which to run QBF. For queries involving one table only, the Join Definition phase is

optional. The designer can also specify command line flags to be used in the call on QBF.

When the frame is activated, QBF begins executing in the appropriate fashion based on

the form, table, or JoinDef, and flags specified. In designing the application, the designer

can use a QBF default form as is, or he can enhance it with the Visual-Forms-Editor. QBF

friames are particularly useful for operations that interact directly with the database such

as adding new rows to a table or retrieving data from at series of tables.

A report frame consists of a repoi t and a menu for running it. The frame may include

a form on which the user can enter one or more values used by the report at run time. rhe

designer can create the form using the form editor. No 4GL code is necessary foi- a report

frame.

Graphs help present data in a clear, visually striking way. A graph is similar to a.

report except that the data are displayed in a bar chart, a pie chart, or a plot.

3- 18

Procedures: A user-specified frame may iequire specific operations that differ from

the capabilities provided by existing INGRES user interfaces. For such operations, thc

application can call a procedure wvritten in INGRES 4GL or in programming languages

such as C or FORTRAN. A procedure is an INGRES 4GL or other host language routine

that is declared in a proceddre definition. A procedure canl be called by frames or other

procedures within an ap~plication. Note that the reverse is not true; that is, a procedure

cannot call a frame.

A p~rocedlure, like a subroutine, can execute frequently used sets of statements and

then return data to the calling framie when it has finished. Procedures are often used for

frequently performed calculations or other processing. Ani examp~le:

procedure addtax (cost =float8,

taxrate = float4)=

begin

cost = cost + (cost * taxrate);

return cost;

end;

The p~rocedlure above, 'addtax', p~erforms at frequently used tax calculation, then

returns a. resuit to the calling framne.

3.2.3 Query-By-Forins (QBF,) QBF is a visually oriented. formis-driveni interface

to INGRES. Q]3F allows both ntew and experienced users to access tables in INGRES

datablases and perform routine data, retrieval. The uisers inay retrieve awd modify data from

dlatab~ase tables without nleedling to learn the commands, of QUEL om SQL, the INGRES

(Itiery languiages.

Thie tasks the dlesigner c.an p~erform using QI3F arc, dividled into two phlases: .Join

Definition and Query Execution. Within the Join Definition phase, hie mnight create the

objects that Q B ti'ses to retrieve anud in -all i puila te dat a inl the database. Inl Qunery ExNecul-

tion ph ase, lie lperforins the retrieval and mai lilation of dat a tisiug thle ob~jec:ts created

lpreViolusly (or' by dlefault).

:3-19

QBF uses forms on the terminal screen in two distinct ways. In the Query Execution

phase, a form is used to append, retrieve of modify data in the database tables. In the

Join Definition phase, a forms interface enables the user to identify and define relationships

between tables to be accessed.

From QBF, the user can access other features of INGRES that are forms-based parts.

Two of these features include different data input modes and an extensive help facility for

using QBF.

A companion product of QBF in the INGRES line of forms management systems

is INGRES/FORMS Visual-Forms-Editor (VIFRED). VIFRED allows the user to modify

forms in the following ways:

* change the appearance of a form to reflect the application more clearly.

0 change the attributes of the fields to protect their contents or to display their data

in a manner more consistent with their" meaning.

* specify range checks and cross-field checks to maintain the maximum possible in-

tegrity for the data in th, form.

When QBF is invoked for some task, Q13F generally provides a default form for the

work. However, because VIFRED can be used to edit a form, the user can instruct QBF

to provide the edited form instead of the default.

3.2.4 Visual-Forms-Editor VIFRED is a visually oriented, neuti-based editor de-

signed to edit forms. t is used to edit the layout of system- and user-(lefileed forms. With

V1FRED, the user can change the appearance of the forms that Query-By-Fornis (QBF)

uses, or lie can create his own forms for use in an al)plicationi program. VIFRED edits,

redefines or creates forms for the terminal screen. On the other hand, Qh3lI is concerned

with data. manipulation. QBF queries and updates actual data values stored in an IN-

GRES database. The user can neither use QBI1 to edit a forin. nor VIFREI') to edit actual

data. A sample VIFRED is shown in Figure 3.7 as it is seen on the screen.

The menus in VIFREI) display the commaniids. Moreover, because VII"RED is vi-

sually oriented, the form is always on the screen (luriing the timne it is biiig edite(I. The

3-20

seaay Intfotmatio"I

*, _o o .4... : o o 4 - -- - -- - -- - -
|nlue |3,alati

I..............s.........-

-1 ------- -t

....--- - - - -- --- °

-- - -- - -- -- - -I - -- -- - -- --

3 3

.......... .o..............4

F l

3 3

3 3

Ctea~e Oete Edit Move Uide Order Save 34elr End Quit :

Figure 3.7. Visual Forms Editor inl INGIRES

form can be used for display or manipulation of data. However, the quality of a, form is

greatly dependent on the designer. How the form is designed and implemented can make

the difference between an efficient and wasteful tata processing. A properly designed form

engages the user, making the terminal screen a more huma.n environment. This can opti-

mize the work done by that user. Therefore, energy devoted to the definition of forms in

a computer system has a significant effect on the overall utility of the system.

3.2.5 Report-Writer The INGRES report writing facility allows the user to create

highly formatted listings of data from his database in a flexible manner. The Report-Writer

can be used to create organized summaries of data for inclusion in other docullients and

to produce regular listings of data for management and production needs, as well as for ad

hoc purposes.

Capabilities of the Report-Writer include the following:

* Lse of OUEI, or SQL. INGREIS's powerful query languages to specify the data to be

used in the report

9 Features similar to word-processing capabilities, such as centering, justification and

automatic pagi nation

3-21

Personnel Listing

Department N~ame Salary

admin malcolm 2,750

cosmetics georgia 1.750

shoo edna 2.000
mike 1.500

toy sally 877
ted 2.615

Figure 3.8. Reports-13v-Fornis in INGRES

" Complete flexibility in specifying how the report will look

" Powerful and automiatic aggregation cap~abilities over changes in value of tile data

columins, as well as over pages or the entire report

" Storage of report specifications within the database, so Ihat the user canl easily run

a report. Ile can also specify paramieters to stored reports to vary the data to be

rep~orted.

Reports- By-Forms is flexible and easy to use, and provides tools adeq~uate to thle

task of customizing inost defauilt report dlefinitionis (see Figure 3.8). Thle (designer (or thle

user) can also use R13F to (define the report foi mlatting commilands onl which to base a Imore

complex report, and subsequently write out a text file containing those coniands. Then

hie could use a text editor to fur-ther enhance the report (definition anid finially uise report

to comnpile thle changed report, into daaase.

The ability to produce reports is a bitsic and essential feature of a compnter sys-

tein A report (-an ho ronsidered the OlgalnizolIion) of dat la for niclerly ou1tputl in pm mlt. Or

on it term-inal sc:reen. When I (ports are written in INC ES, dlata, ;,,re retrieved fli n a1

database, sorted formnatted accom ding to 1)re-esta 1)]islied specification and writ ten to a file

listed dlirec tly to anl oiitlia t ~i, A 1,epoll 1 cinminci two la.asic elemlents: (!at l and

3-22

specifications for output. Both the data to be reported and the output specificatioais can

be defined by the users or generated as system defaults, both within the context of special

repoi t-writing software.

3.2.6 Programming Tools in INGRES In INCRES, embedded SQL is an embed-

ding of the SQL database into standard procedural programming languages, such as C or

Fortran, known as the host languages. Embedded SQL is compact and powerful, giving

the user access to a. full range of INGlRES database and forms-control functions within

an application. It includes all the standard SQL commands that within an application.

It includes all the standard SQL con mands that are available in interactive, forms-based

applications with or without database access.

Embedded SQL gives the user full power of the INGRES Forms Run-Time Syste,,,

(FRS) in order to create forms-based applications. Using forms the user can create with

the Visual-Forms-Editor. lie can move data to and fron forms, lie can switch forms from

one port of an application to the next, and he can specify the operations lie can, as a user,

perform on the data displayed in the form.

3-23

3.3 The Comparison

In the low level, there are some differences between the ORACLE and INGRES

4GLs. A comparison of the canonical features will show these. This comparison is done

by looking at some of the major characteristics that are peculiar to a Fourth Generation

Language.

* ENVIRONMENT: ORACLE and INGRES have both two canonical modes to work

with; interactive and procedural. In ORACLE, the interactive mode is used via

SQI,*Forms. The designer has a great amount of flexibility in this almost completely

interactive facility. ORACLE allows the designer to edit ,INP files in the ,1GL code.

This procedural application design is harder and takes a longer time than the inter-

active mode for a designer

INGRES's interactive QUEL (SQL) is an interface that enables the designer to ma-

nipulate data in database using QUEL (SQL). As it is in ORACLE, the application

can be edited in 4GL in a procedural way ab well.

• PROCEDURAL LANGUAGE: Procedural control commands, which perform various

processing tasks such as controlling the flow of the execution or handling processing

error conditions represent integral parts of both languages. Statements in a procedure

can be classified as:

1. Directive

2. Command

3. Procedural control

In OR ACLE, these statements are either in SQL*Form., appearimg as the menu

items, or they are within the triggers. Some of the examples:

CALL form

CALLINPUT

EXIT

GOBLK block

3-241

GOFLD [block]field

MENU

In INGRES, these statements can take place in the ABF as defaults or they can be

typed in the source code. Some INGRES statements are:

CALL

CALLFRAME

CALLPROC

EXIT

NEXT

IF. .THEN. .ELSE

*DATA DICTIONARY INTEGRATION: When a database is created, INGRES sets

tip the system catalogs, tables that hold information about that particular database

-is the (lesignier or the user wvorks with it. These system catalogs store specifications

for the tables, indexes, forms, reports, and queries associated withi that database.

In ORACLE, the (data dliction,- ry is a set of tables to be usedl as a, rea(1-olily reference

guide ab~out the database. For example, it will tell

- the usernames of ORACLE users

-rights wnid privileges they have been granted

- names of database objects (tables, viewvs, idexes, clusters. syn onlyis, anul se-

quences)

- iniformation about primary amid foreigni keys

- (default values for columns

- wuiz.thtiigt" applied tu a table

- how muchi space has b~eeni allocatedl for, an1d is ciirreiitlY u1se(by, thle object.,

belonging- lo a dIatablase user

* DATA TYPES: In ORACLE, from the list of SQL*Forms field types, the data type

for any field call be determined. These are:

- CHAR fields may contain any combination of displayable characters, including

letters, digits, blank spaces, punctuation, and special characters.

- ALPHA fields may contain any combination of letters, either upper- or lower-

case.

- TIME fields may contain a time of day in the format HI124:MM:SS.

- NUMBER fields may contain any number, with or without a sign, or decimal

point, or scientific notation.

- INT fields may contain any integer-a number without a decimal point.

- MONEY fields may contain a. number representing a sum of money.

- RNUMBER, RINT, and RMONEY fields are right-aligned, instead of left-

aligned.

- DATE fields may contain a (late in the rormat DD:MM:YY.

- JDATE (Julian l)a.te) fields may contain a date in the format MM/DD/YY.

- EDATE (European (late) fields may contain a (late in the forma.t DI):MM:YY.

In INGRES, the data tvpes are:

- CHIAR(N) is the fixed-length character string including only the printable char-

acters.

- VCIIAR(N) is tihe variable-length character string including all the characters

except the NULL.

- VARCIIAIZ(N) is the variable-length character string including all the charac-

ters.

- F(N) is the floating point nunber.

- FLOAT is I he sa me as f(1).

- I(N)is lie i integer tn iil her with I a length of two bytes.

3-26

- INTEGER is the integer number with a length of four bytes.

- DATE data type columns holds absolutp dates, absolute types, or time intervals.

- MONEY data type contains decimal currency data. INGRES provides great

flexibility with regard to tlhe money data type. Using environment variables or

a set command, the local currency conventions can be adopted.

The data. types for a 4GL and how these are implemented in ORACLE and] INGRES

are summarized in Table 3.1

Table 3.1. Canonical Data Types

data typoa ORACLE JINGRES j
character CHAR CIIAR(N)

ALPHA VOIIAR(N)
________VARCHAR(N)

integer INT 1(N)
________INTEGER

float NUMBER F(N)
_______ _____ F LOAT

date I)ATE DATE
3 DATE

I_____ ED AT E
mioney MONEY MONEY

9DATIA ENTRY: In ORACLE, (data can b~e entered in the field, block, or form level.

The INSERT statement inserts one(- or more rowvs into the table. The row tha~t is

recently entered becomies the laist, row in the taible, if there is miore than one row in

the tal)le.

In INC IIES, rows can be called with nunmbers. For exa nllle:

INSERTROW ROWNAME (4)

opens upl a, new\ rowv immledliately following row (4) inl the table field.

In 0ORACLE, inserts Can be(11in a(l(t.o wich arme (](finme(] as the base tables in the block

levels. In) IN IES, there is 110 Ii nut ation.

.3-27

DELETE and UI'DATE statements works the same way in both database systems.

INGRES has a. different function called validate. This function performs validation

checks on simple fields or table fields as they are defined with the Visual-Forms-

Editor. If it is used without a parameter, the validate function performs - validation

on every field in the current form.

In ORACLE, this is transparent to the user, and done by SQL*Forms. The values

which are entered into the fields are immediately checked during the run-time.

" CREATING THE ENTRY FORM: In ORACLE, the application starts from a form

called the entry form. To run the application, the name of this form is typed in the

operating system prompt. INGRES does this via, a frame called topframe.

" CREATING A DEFAULT SCREEN: ORACLE creates a. default screen in the block

level. Selecting the default item from the BLOCK window and specifying the default

table name is enough to see the fields of that table.

In INGRES, the designer can do this in ABF in two steps. While in QBF, VIFRED

should be a' tivated and from the 'create operations', 'table default oper:Ltion' is

chosen. INGRES has a. unique and readily available function in the QBF level. This

function is called 'Jointable' which makes the joining of two or more tables easier,

when this is necessary.

" TESTING: In ORACLE, testing is realized in the same way as running an applica-

tion. Additionally, there are two debugging utilities. The first. one simply works by

selecting the 'debug' operation in tie form level. The second one is a plie-defilned

key. When this key is hit, after run ning into an erior message, it gives detailed

information about the error.

INGRI'LS applications can be tested in the runl-tilne. as well. In both systems, it

is better to run (test) the application on the system level. Tli,, will decrease the

amount of overhead imposed by SQ!* Fori s and .,I IF, and gi\'es a pIlick re ponse

to the liser.

3-28

* QUERIES: In ORACLE, queries caa be executed either by the pre-defined key or it

can be typed into a trigger statement. When the trigger statement goes off, the query

is executed., Complex queries must be typed in INGRES in the 4GL code itself.

In ORACLE triggers seem to be an advantage. Instead of using a pre-defined key,

writing SQL statements inside the 4GL code, or even instead of typing the 4GL code

itself, triggers can be used, saving the application developer a lot of time.,

In INGRES, application flows with the INGRES-defined or user-defined functions

The canonical features of a 4GL are satisfied in both database systems.][owever,

the way these features were satisfied is not the same. Below, in Table 3.2, the canonical

features of a 4GL are listed. The check marks indicate that that feature is satisfied.. As

seen, both ORACLE and INGRES satisfy these features. These are very general and apply

to most applications. After the needs for the application are specified, the satisfying 4GL

product can be used.,

31-29

Table 3.2. Canonical Features of 4GLs(1)
Feature ORACLE INGRES
Simple queries / V
Simple queries and updates V V
Complex queries and updates V /
Database creation V v
Intelligent database
operations V
Generation of data-entry
screens for key-entry
operations V V
A procedural language I /
Spreadsheet manil)ulation V V
Multidimensional matrix
manilpulat, ion
Report generation / /
Report manipulation V V
Graphics manipulation V V
Decision support for
What-if questions V /
Mathematical analysis tools
Financial analysis tools
Text manipulation V I/
Designed for on-line
operations V V
Easy debugging '/ V

3-30

IV. Building The Application In ORACLE

This chapter describes the process of building database application using the SQL*Forms

by ORACLE. The Theater War Exercise is an implemented application in INGRES RDBMS.

In this thesis effort the same application is implemented in ORACLE.

4.1 Approach

In designing the TWX application, the prototyping approach was used.

The word 'prototype' literally means 'first of the type.' The approach is to create a

prototype for experimentation. The emphasis is on determining the adequacy of a proposed

solution before investing in a large final system. The following general activities occurred

in this design:

* Preliminary logical design of the database.

The database that supports the TWX was already created. The relationships between

the entities were realized. So, there was little to do in designing the logical database

except the transfer of the raw data from the old system to the new one. The raw

data which was kept in database tables was transported to ORACLE.

* Construction of the generation modules.

In the construction of the modules, the logical flow of the program was the key to

the design. To have a, better idea about this flow, the a)plication in the old system

was observed and the game, the Theater War Exercise, was played. In this phase,

the modules were distinguished.

In Figure 4.1. these modules are shown. Each rectangle and the cloud represent

a module that are dependent on another. The hard-lined rectangles represent the

miodnies that are conpIlltld. whereas the <lash-li ned rectangles represent the ones

that are to be comipleted. The clould is the Land Simulation modile whicI originally

is not imipleienlted in the IN CIZES RI)]NIS.

'I-l

SIMULATION /APPORTION

EXI

LAND

SIMULATION

Figure 4.1. The TWX Application in ORACLE

'1-2

9 The necessary changes to the database.

In Chapter III, a detailed discussion is given about the ORACLE and INGRES 4GLs.

There is a major difference between these two RDBMSs. This is assumed to be a big

disadvantage for ORACLE when designing an application in SQL*Forms. However,

later on this turned out to be an advantage.

In ORACLE SQL*Forms, in the block level, in order to update, delete, or insert data

to the database, a base-table has to be chosen. Otherwise, the data manipulations

can not be accomplished. This brought up a problem. If a base-table has to be

chosen for each block, and , the source code practically had to be doubled, because

the structure of the tables for the users BLUE and RED are identical but the data

is different.

At this point, an other feature of ORACLE was used. ORACLE allows the designer

to define tables as variables, thus, cutting the source code down in half.

In order to assign variables, some changes were made to the database itself. Since

the tables were created in th, database under the name 'OPS$TWVX', The database

was connected under this nalme. Then two user names were created and they were

given access to the database. This is accomplished by this comniand which was given

after the SQL prompt in ORACLE's SQL*Plus:

SQL> GRANT CONNECT, RESOURCE TO USER BLUE

IDENTIFIED BY PASSWORD;

SQL> Grant succeeded

SQL> GRANT CONNECT, RESOURCE TO USER RED

IDENTIFIED BY PASSWORD;

SQL> Grant succeeded

At. this time, these two new users were given access only to connect to the system.

A user in ust. have CONNI.,CT privilege ill order to access data ill all OlRACE',

database. Every user with CONNECT is identified t)y hoti an (I)ACL, iserniaine

4-3

and a password. ORACLE usernames inuot be distinct within a database, regardless

of their passwords. A user with only CONNECT privilege may (14):

- access the ORACLE database

- query (look at) other users' data (SELECT from tables and views), if SELECT

access has been granted to the user or to the public

- perform data manipulation operations JINSERT, UPDATE, DELETE) on other

users' tables, if the a)propriate access has been granted

- create views, synonyms, and database links

- perform table or user exports.

If a user has both RESOURCE and CONNECT system privileges, then lie has all the

privileges associated with the CONNECT privilege and in addition lie may create

database objects, such as tables, indexes, clusters, and sequences. lie may also enable

or disable the auditing of his objects and grant to or revoke (opposite of grant) from

other users privileges on his objects (10:16-18).

The tables in the OPS$TWX account are related to both users BUE. and Ill E).

Some of the tables are being used in common by both users. All the tables in the

database (125 tables), were given access to the related users one by one. If tile table

was related to user BLUE, it's given access to the BLUE user by this comlnmand in

SQL*Plus while connected as OPS$TWX:

SQL> GRANT ALL ON TABLE TO BLUE;

There are certain options coming from the word GRANT in the above statei(lent. If

SELECT is used then the granted user can select, view and query tables from the

specified table. If UPDATE is use(l, then the user can upldate the table which is

granted. In case of a I)ELE.TE, user can delete the data. If the ol)tio, ALI. is used,

the user ias the options that are explained above.

The tables I hat specifically belong to the user BLUE were granted to thlat u. er with

all the privileges. Because, the user BLU E should be ale to manilpulate tile data

,1-,l

that belongs to him. The same steps were taken for the user RED. Eventually, it

was seen that some of the tables are being used commonly. In these cases, both users

were granted with the same privileges. So, in the application both users will be able

to read the data in these common tables.

In some phases of the application, the user BLUE needs to check some tables that

are granted to the user RED. The same necessity occurs for the RED user. For these

tables, a SELECT permission is given to each side, thus, allowing them to view the

data but not to change it.

ORACLE allows the user to call the tables in other names by creating synonyms for

them. Synonyms are the names assigned to a table or a view that may then be used

more conveniently to refer it. If the user has access to another user's tables, as in this

case, he might create synonyms for it and refer to it by the synonym alone, without

entering the user's name as a. qualifier, which is somewhat cumbersome (11:5-6,1,5-

65).

The command to create a synonym is:

SQL> CREATE SYNONYM [user.]synonym FOR [user.table;

Synonyms were created for every table that is granted to users BLUE and RIED by

connecting to SQL*Plus in their names and passwords. The tables that are used

only by BLUE are identical to the ones that are used by RED. The number of

fields and the field names were also identical. This became an advantage in creating

synonyms for the tables in BLUE and RED accounts. Since the tables were identical

the same synonyms were created for the tables. In the (lesign phase, this became

a real advantage. In the block level (in SQl,*Iormns) only one table name could be

used for each block. Since the SQL*Forms recognizes the user when he is connected

to the forms, it makes th1w i "es ary changes to the appropriate tables.

Obviously, the same synonyms were used for the comnnion tables. Such as WIATIllR,

USERII), or, TER.MINALCON. Creating the synonyms provides both the dat a

independence and location trans parency: synonynis permit application to fun (1ion

,I-5

without inodification regardless of which user owns the table or view aild regaidless

of which database holds the table or view (11).

After these changes to the database, the application could be designed.

4.2 Designing The Application

Ia ti.; :cnofn, in.tead of explaining the design phase of the TWX application in

detail, step by step, a general methodology to design 'any' application is followed. The

examples are especially chosen from the TWX application. Since onl3 examples are given,

this section doesn't cover the TWX application as a whole. Given the information above

and below, readers of this thesis who are eager to learn more about the application are

encouraged to see the application themselves. Not only can they see the application in the

design phase, but also they can run the applica.tion and become a part of it.

For the time being, the application is running on a Sun386z which is located in the

Wargaming Lab in AFIT. It can be run on any Sun station by remotely logging on to Moss,

the curr, nt system. The forms can be run only in the shell environm, at. If the window

size is not big enough a.nd if the run command is not given in the shell, the system will be

locked.

The mtin unit in building the application is a. form. An application consists of one or

more forms. It's a good idea to break down the application into as many forms as possible.

This has some advantages. It decreases the form saving time and the form generating time.

On the other side, if there are separate logical blocks, each of these blocks can be

designed as different forms in modules as it is in an Object Oriented Language. This

improves the understandability of the code itsef. In addition, if the application is to be

modified or maintained later, thes, 'modnes become really handy. If one of the foi ins

were to be modified, this would not effect the others.

The CHOOSE FORM window serves as - main menu in ORACIE's SQL*Forns.

Here the name of the form that is to be worked oii is entered (Figure I.2).

Below, the different functions in the FORIM leelI are, litd:

.1-6

Name CHOOSE FORM

PASSWORD _
Actions:

CREATE MODIFY LIST

RUN DEFINE LOAD

FILE GENERATE

Figure 4.2. Forms Design in SQL*Forms

* < CREATE > creates a form.

* < MODIFY > lets the designer make changes to an existing form.

9 < LIST > provides a list of existing forms that can be worked with.

@ < RUN > runs a form for the operator to use or for the designer to test.

e < DEFINE > can change the form name or title and the validation unit. Also form

triggers can be triggered.

* < LOAD > loads an .INP file into memory. To preserve the nev form, it should be

saved, and then it will appear in the list of forms.

* < FILE > can save or discard changes to a form, create a copy of the form under a

new name, rename the current form, or delete the form.

• < GENERATE > converts the form definitions for the current form in working

memory ifito a file that can be RUN. A form can not be run until it is generated. Any

time a form has been modified, it must be regenerated to incorporate the changes.

Otherwise, the older version would be running.

4.2.1 Crealing a Form After the whole application is divided into nlodules in 1he

design phase, one of the them is chosen to be the entry niodule. lah(lI inod(ile corresponds

to a form. Namely lPASSWOI1I) is the entry module that is designed as a form in the

4-7

TWX application. Now the whole application can be run by starting from this entry form.

In Figure 4.2, the form PASSWORD can be seen.

To create the entry form (or any form), the name of the form must be typed into the

NAME item in the CHOOSE FORM window and the CREATE item is chosen. Soon the

CHOOSE BLOCK window can be seen (Figure 4.3).

---------------------------------- i
CHOOSE FORM

Name

PASSWORD----------------

CHOOSE BLOCK

Name
PWORD_

•. Page Number 1

Actions:

CREATE MODIFY DROP

LIST FIELDS DEFAULT:

PREVIOUS NEXT

Figure 4.3. Block Design in SQL*Forms

4.2.2 Cralinq Blocks A form consists of one or more blocks. Blocks are the build-

ing units of each form. Each corresponds to one database table called the base-table.

However, if the block won't be updated, delete(, or inserted into, it, may not have to

correspond to a database table. An example of this is a block that has only text in it.

Some important items and their functions in the CHOOSE BLOCN window are:

* < CIREATE > lets the designer create a new block and puls him in the screen

painter. Screen painter is the part of SQL*Forms where the custom fb ins ale created

ammd modified. In the screen painter blocks an(d fields are defined altd modilied and

triggers are speci fied.

.1 -

9 < MODIFY > lets the designer make the changes to an existing block. If an

existing block name and the correct page number for that block appear in the window,

selectih.g MODIFY displays the block in the screen painter.

9 < DROP > deletes the block that is chosen.

e < DEFAULT > creates the blocks with default settings. This is a quick and easy

way to construct a form.

As shown in Figure 4.3, the P\VORD block under the form PASSWORD is not

created by the defaults, because, t here is no base-table supporting this block. Even though

the fields in this block are coming from three different tables in the database, no base-table

is chosen. Reason being that there is no update, delete, or insert to a.nd from any of these

tables in the database.

If all the fields were coming froni a table in the database then that particular table

could be chosen as the base-table for that block. I, this case, block can be created by using

DEFAUIT item. Besides, using the TABLE subitem in this DEFAULT window, one can

pick the right table. SQL*Forms can let the designer view all the tables in the database.

All the designer have to is to highlight the right table and hit the return key. By using the

COLUMN - 'bitem, one can pick the desired fields from a table in the database.

If the d(esigner wants to create a multi-record block-one that can be displayed as

several records from a field in the database at once, lie can do this in the block level. In

Figure 4.A, SPECIFY BLOCI OPTIONS window includes the parameters that could be

changed. Although the screen painter displays only one row from each field, when the form

is run, the specified number of rows will be seen on the screen during the runtime.

4-9

"-1

DEFINE BLOCK Scq # 2

Name APPRT - - ----------------- - - --

Description _ -
SPECIFY BLOCK OPTIONSAPPORTIONMENT

Table Name: Check for unique Key

APPIIIST *Displayin-block-menu

Actions:
TRIGGER Number of Rows Displayed ,I

Numbers of Rows Buffered 4
COMMENTI

Numbers of Lines per row 3
I------------------------

L-- J

MISSION TYPE APPORTIONMENT

OFFENSIVE COUNTER AIR (OCA) - _

OFFENSIVE SUPPORT AIR (OSA)

AIR INTERDICTION (IND)

DEFENSIVE COUNTER AIR (DCA)

L ---

Figure 4.4. The APPORTIONMENT Block in the Design Phase

4-10

If any of the fields on the block on which multiple records are shown. does not belong

to the base table chosen for that block, then, what will be seen on the screen during

the runtime will be a clutter. One of the blocks (APPORTIONMENT) can be seen in

Figure 4.4 as it is in the screen painter, Again in Figure 4.5, the same block is seen during

the runtime with the multi-records.,

SEMINAR :

SIDE BLUE

CONFLICT DAY 0

PROJECTED APPORTIONMENT FORM

MISSION TYPE A PPOIRI'IONMEN'T

DEFENSIVE COUNI ER AIR (DCA) DCA 25 %

OFFENSIVE COUNTER AIR (OCA / OCA 25 %

AIR INTERDICTION (IND) IND 2, %

OFFENSIVE SUPPORT AIR (OSA) OSA 25 %

F 4 e0 %

Figure 4.5. The APPORTIONMENT Block Durinug lRuntihu

,1- 11

As explained earlier, a page is practically the same as a s,'een. Oil a page, there

call be more than one block. The multiple tables might be needed to be updated, deleted,

or inserted by viewing them altogether. As a matter of fact, the APPORTIONMENT

block in Figure 4.5, consists of two blocks. In one block, the multi-records need to be seen

bringing the necessity of a single base-table for that block. On the other side, the second

block carries the crucial information for the user. Thus, the two blocks have to be on the

same page si mul] ta neously.

4.2.3 Saving, Running, and Testing the Form The TWX application is a multi-

form environment. The first form, PASSWORD, is the entry form. This form has two

blocks. Until this form (thus any other form) is saved, the changes made remain in working

memory, but not in permanent storage. When the form is saved, all of the created form

definitions are permanently stored in a database. To run the form, these form definitions

must be converted into a file that can be run by SQL*Formms. This process is called

'generating' the form.

In order to save the file, the designer has to be in the "ILE window. Here, he

call save the current form (SAVE). le can discard the changes made to the current form

(DISCARD). lie call save a copy of the current form under an other name (SAVE AS).

lie call rename it (RENAME) or lie can perlnanently delete the form fron the database

(DROP).

There are couple of points that can save tile designer some minutes, or even hours.

SQL*F'orms doesn't let the designer go out of the form before he saves the chanlges he

made to the form. Sometimes, he does not even have to make any changes to the form.

SQL*Formns assume, tha.t there has been a. modification (when there i., not) when the

MODIFY key is hit. This precaution leaves no doubt about secturing the current form

against accidental mishaps. Iowever, tile designer inighl clop lie ci rrent formim acciden -

tally. In this case, lie can renarne the form under a different name and later he can load

the original form back again, thus, saving the previoiis olie.

If a block is accideatal ly d ropped (tie same as deleted), in tie form level., t lie (urrent

forIll call be discarded. WhaI happens is tihe latest cihaiges to thit foi in are igmored. So,

1-12

the form can be reopened in the previous version of it.

After the form is created, the database tables can be viewed. All the columns in

the table can be accessed through the form. If one or more columns from a table are not

viewed by the form, then these can not be altered during the runtime.

4.2.,4 Modifying the Form Through SQL*Forms, new fields can be created. These

new fields don't necessarily have to belong to a table in the database. A drawn field can

be moved to any place on the screen together with all its ;t tributes. However, if a 'l hole

block is being moved inside a form, or from one form to an other c -, thei the block level

attributes are lost. Although every field in that block keeps its attributes and triggers,

block level 'where, order-by' clauses, block level triggers, multiple-record specifications turn

into default values.

If a block is going to be moved, this can be done in the '.INP' file. But, the designer

must use caution when modifying this file. Since when the forms are loaded by their .INP

files, any minor change in the syntax can cause not to be able load the form both in the

design-time and in the runtime. In SQL*Forms, the debu,ging tools do not work, if the

form can not be loaded. Lots of precious time can be wasted after modifying the .INP file.

While in a. block, the attributes of the field can be changed, modified, or redefined.

To set the attributes or to change them, while on a field, simply the DEFINE FIELD

window is chosen. In this wvindow, the important attributes that could be set are:

* TRIGGER: Displays additional windows that are used to define triggers.

* ATTRIBUTES: Displays the SPECIFY ATTRIBUTES window., where the designel

determines various attributes of the current field.

" VALIDATION: Displays the SPECIFY VALIDATION window, where the field length,

query length, and criteria that validate what the operator enters are explained.

" COLUMNS: Display the LIST COLUMNS wi,,dow, which .,hoW- the namfe of echU

column in the base table for the current block.

,4-13

Frum the TWX application, many examples can be given for the above field at-

tributes.

In the PASSWORD block, after the user enters the seminar number, a post-field

trigger checks the user input and validates it. If the seminar number is not the same one

as the activated seminar number in the database, a message on the screen warns the user

and forces him to enter a valid one.

In the same block, the SIDE field which consists of only one character rejects two

digit insertions by validating the input. In this block, when the password is typed, it

can not be seen. This is done by setting the attribute echo to off in the AJTTRIBUTE

WINDOW.

4.2.5 Triggers The application TWX is driven through SQL*Forms triggers. Trig-

gers are activations placed strategically throughout the form. When certain inputs or

events occur, trigger goes off. When this happens, the contents of the trigger-special

rules and instructions written by the designer-are executed. SQL*Forms offers a wide

range of built-in logic capability. With triggers, the designer can do even more. Triggers

give the designer the power to take the shell of a form and craft it into a. sophisticated

application (12).

The capabilities of triggers and related examples from the application are listed

below.

* Triggers can validate data entry in several ways.

In the MISSIONINPUT block which is in the APPLICATION form, the field mis-

sion-number has a, trigger that validates the data. When tihe line number is entered,

this is compared to the one in the database. If this is not a valid line number then

the trigger goes off and forces the user either to enter a valid number or to exit the

ajlplica, ti l.

* Triggers can protect the database from operator errors, such as the entry of (luplicate

records or the deletion of vital records.

4 -1,1

In PRIMAC block (primary aircraft) which is in the APPLICATION form, there

are four triggers in the block level. One of them prevents the user from deleting the

primary aircraft entries while there are other aircraft entries from other kind, thus,

protecting the application from accidental or intentional data manipulation.

* Triggers can limit operator access to specified forms.

While in the APPORTIONMENT form, after the user enters the percentages, the

entry-exit flag is set to one. So, when he tries to conie back to the APPORTION-

MENT form, he cannot enter the same form. He can only use this block once.

* They can display related field data by)erforming table look-ups.

In the APPORTIONMENT form, there are two related blocks. One of them is the

SORTIESAVAILABLE and the other one is the PRIMARYAIRCRAFT blocks. In

the first one, the user can view the available data which shows the available aircraft

that can be assigned. By looking at these records, the user can assign the aircraft

in the PRIMARYAIRCRAFT block. As a matter of fact, wlhile the user assigns the

aircraft, the total ni uber decreases in the other block making immediate updates.

e They can compare values between fields in the form.

In the APPORTIONMENT form and in the same-named block, the user first enters

the apportionments (percentages) for the aircraft before lie begins the game. Later,

during the game, according to wha.t he has played, he can compare the played-vabies

with the predicted numbers.

* They can calculate field values and display the results of field calculations in different

fields.

It is quite easy to calculate the numbers in rows and put the iesult in a field. If this

is going to be (lone for the columns in the riintime and dynalnically, it vill be quite

complicated to come up with the total. Yet, this was the case in this application.

In the AIPPOITIONMENT form, a summation of the numbers was necessary during

the runtiine. Such that, Whcne the user inputs four percentages the total should be

reflected on the screen instantly and dynamically. Thiis screen is shown in Figuire 4.5.

'1-15

In ORACLE SQL*Forms, in order to calculate the total, a tutorial paper that was

specially prepared for this purpose became very useful. (9).

In this calculation, five different triggers were used. First, the old values and the

old sum were copied to an other field that wasn't seen on the screen before coming

to the block. It was designed in such a way that while the user enters the different

percentages (in tens), the old value is erased and the new one is either subtracted or

added to the old sum depending on that the new value. So, the total is kept updated

every time a new value is entered.

As a rule in the application, the summation of these four values should add up to

one hundred, because these four numbers are percentages. Furthermore, an other

trigger doesn't let the user go out of the block unless the summation is not equal to

one hundred.

Triggers can enforce block coordination during insert, update, delete, or query oper-

ations.

In SQL*Forms, via triggers, all the insert, update, delete, or query operations can

be fired an(d committed to the database. This can be done in the block or form level

depending on the trigger tha.t is being used.

In the APPLICATION form, there is a screen where nine blocks are on the screen

altogether. This screen can be seen in Figure 4.6. Four of these blocks are for the

user to enter the values. After the user is done with entering to all of these fields,

lie simply hits the commit key, and in the form level the comnlit-key trigger fires

and commits all the changes that are made. If there are no changes made, then the

trigger does not fire.

'1-16

2ATAF OFFENSIVE-.COUNTER-AlfLMNISSION-INPUT

DAY. 0

CYCLE: DAY

SIDE. BLUE

MISSION LINE #: 1004

TARGET # 34

PRIMARY AIRCRAFT ATTACK SORTIES AVAILABLE

TYPE ROLE SORTIES TYPE ROLE SORTIES

F4 A 12
F16 A 117

-NF5 A 162
Toll A 352

ESCORT AIRCRAFT ESC SORTIES AVAILABLE

TYPE ROLE SORTIES TYPE ROLE SORTIES

F4 A 12
F16 A 117
F15 D 257

DSUP AIRCRAFT DSUP SORITIES AVAILABLE

TYPE ROLE SORTIIES TYPE ROLE SORTIES

ECM AIRCRAFT ECMI SORTIES AVAILABLE

TYPE ROLE SORIEmS TYPE ROLE SORTIES

Figure 4.6. A Multi-Block Screen (L1age)

4-17

*Triggers exp~andI the functionality of function keys.

As stated earlier, one of the trigger types is key-defined triggers. There are twenty

six key triggers in SQL*Fornis. Somne of themn and their fuinctions are as follows:

<KEY-CLRBLK> :clears the specified block

<KEY-CLRFRM> :clears the specified form

<KEY-CLRREC> :clears the record

<KEY-DELREC> :deletes the record

<KEY-EXEQRY> :executes a defined query

<KEY-EXIT> :exits the current block or the form and either goes to

the operating system prompt or to the form (or block)

it is called.

<KEY-PRVREC> :goes to the previous record

<KEY-NXTREc> :goes to the next record

Key triggers are miost often usr-d to (isable keys or performi comiplex or mutltijplc

functions with a, single key strokes.,

11.2.6 Validating Data W~ith SQL Statemi(nt With the a(lit jonal SQL statemlents,

greater capabilities can be add~edl to the application.

Validating (lata by displaying related data: In the logistic niovemient formi (LOG-MOV),

somne logistic mnovemients are (lone lby the user. Ile selects the airfiel(L that thle inovei 'it

is going to lbe (lone fiomi and to. There is a post-change trigger in both of these fields. In

this trigger, the following SQL, statemnent takes p~la:e:

SELECT 'X'

FROM DUAL, BL..FIELD

WHERE :LOG.MOVE.FIELDI = BL-FIELD.FIELD

This trigger force.,, the uiser to enter valid ailfields. In case of a ii ;jairfield

nunhliber, a fail u to niessage can be typedl as well. 'Ph uis, warning the uiser abo d)1 ie it Iislial).

There is no such field, please reenter!

The DUAL table is an unconventional use of SQL. It is a device exploited by

SQL*Forms to do one thing-to set up a true or false test on field values (or system values,

such as the system date) in a form.

A trigger that uses the DUAL table isn't interested in retrieving anything from the

database. The DUAL table trigger only wants to know whether the WHERE CLAUSE in

the SQL statement is true of false; in other words, a 'yes' or 'no' answer.

Consider the LOG-MOVE trigger. If the statement in the WHERE clause happens

to be true, then the SELECT statement will fetch the value 'X' from a dummy table called

DUAL. If the statement is false, then the trigger fails without fetching the value 'X'.

DUAL is an actual database table-the smallest conceivable table-supplied by OR-

ACLE. As shown below, DUAL is a one row, one column table that contains a single

constant value, 'X'.

DUMMY

x

,1-19

V. Conclusio-ns and Recoinmendations

5.1 Overview

This chapter gives a summary of the solution to the problem that I stated in the

introduction section and draws conclusions about it. Recommendations are presented for

further courses of actions of this study.

5.2 Summary of Research

The goal of this th, sis effort was to substitute the ORACLE RDBMS for INGRES

RDBMS in this application, namely, the Theater War Exercise. The relational data was

easily transferred. Then, the 4GL applications were built in ORACLE by using SQL*Forms

utility. There were four benefits from this effort. The first two of them were directly relted

to the application and very necessary to draw conclusions about the results. The last two

were possible side benefits. These are:

1. Determine a baseline for 4GL comparison in general

2. Compare and contrast the ORACLE and INGIRES 4GLs

3. Development of a canonical set, of 1GL functions that can be used to compare other

systems

4. Development of automated methods to transfer INGRES ,IGL to ORACLE ,1GL

The work accomplished in this thesis effrt may be su anarized as follows:

e A detailed explanation of the ,IGLs including answers to these questions:

- What are they?

- flow were they evolved and why were they lice led?

- What can be (lone with I hen and how cal. they be used in the databa:e arena?

-_ What are the (liflreren ces betw een Sone of the ,IGL's nd what criteri a are 11s(d

to bring the (iifferences up?

5-I

* A detailed study of the ORACLE and INGRES 4GLs including the tools they use

to build applications

* A comparison between the two 4GLs

* Building the application in ORACLE by using SQL*Forms

5.3 Conclusions

There were two areas in this effort when I undertook the study that were closely

related to each other. First, a deep understanding of the 4GLs was necessary through a

dense research. Then, the first theo"etical knowledge should have been combined with the

practicality of the application creation.

When I accomplished these, I achieved the first two goals of the effort; compare and

contrast the two 4GLs and the building TWX applict-.tion in ORACLE RDBMS.

Between the two 4GLs, ORACLE seemed easier for building either custom-made or

default forms and applications. Again ORACLE is superior by allowing the designer to

assign variables to databa.)e tables by saving disk space. ORACLE is very fast in the ne ,

system compared to INGRES in the old system.

The application built by ORACLE's SQL*Forms as far as its contents is very much

like its counterpart INGRES. More than half the application was redesigned successfully.

5.4 Recommendatio. s

Because of the time constrahts during this study, I was more concerned about the

main goals. I certainly spent most of my time tackling the problems I encountered in the

course of this study. It was surprising for me to find some of the solutions to the problems

in the design issue at the very last moments.

The development of a canonical set of ,1GL functions can be derived after closely

examining the zipplictiun in the I lkiiiti iI aliu gut ig i , tiogh the "oul (x ode in the ,,elnu

time. The source code can be parsed depending on the ftiuctionaity. Thlen, discrete 'IGI,

flinctionis can)e (lerived. These functions may be used in the evaluation ol other i4Ls.

5-2

Any project whose goal is some kind of application design by using 4GLs may have side

benefits by exploring these 4GL functions. This kind of study leads to the understanding

of the real capabilities of the other 4GLs.

Because of ORACLE SQL*Forms' almost totally automated design phase, there was

hardly any motivation to develop the automated methods to transfer INGRES 4GL to

ORACLE 4GL. Yet, this is a necessity and should be implemented in another study. Once

this process is automated, the transfer of the applications will be quicker. Although this

might seem quite accomplishable, the fact that the both 4GLs are running on different

systems make the job harder.

Although this thesis effort is quite successful in many ways, the application creation

in ORACLE has not been finished yet. I strongly recommend it be completed in another

thesis effort to evaluate both systems in the best way possible.

5-3

Bibliography

1. Martin Arben. Fourth Generation Languages. Prentice-Iall, Englewool Cliffs, N.J.,
1986.

2. Michael S., Brooks. Develop a new database and support software for the theater
war exercise. Master's thesis, AFIT/GCS/ENG/87, School of Engineering, Air Force
Institute of Technology (AU), Wright Patterson AFB, Oh, 1987.

3. CompuServe Data Technologies. The 1990 Guide to High-Performance tGL/RDBMS
Applications, part 2 edition, 1990.

4. Daniel J. Cronin. Mastering ORACLE. Hayden Books, 4300 West 62nd Street, Indi-
anapolis, IN 46268, 1989.

5. Peter J. Gordon. A graphical player interface to the theater war exercise. Master's
thesis, AFIT/GCS/ENG/89D-5, School of Engineering, Air Force Institute of Tech-
nology (AU), Wright Patterson AFB, Oh, 1989.

6. W. Gregory and, W. Wojtkowski. Applications Software Programming with Fourth-
Generation Languages. Boyd & Fraser Publishing Company, Boston, 1990.

7. Mark S. Kross. Developing new user interfaces for the theater war exercise. Mas-
ter's thesis, AFIT/GCS/ENG/87- 19, School of Engineering, Air Force Institute of
Technology (AU), Wright Patterson AFB, Oh, 1987.

8. J. Martin. Application Development Without .Trogrammers. Prentice-Hall, Englewool
Cliffs, N.J., 1982.,

9. Keith Morrison. Totaling columns in sql*forms. Advanced InfoStructures, 1, 1989.

10. Oracle Corporation. Oracle Database Administrator Guide, 6.0 edition, Novem-
ber,1988.

11. Oracle Corporation. SQL Language Reference Manual, 6.0 edition, November,1988.

12. Oracle Corporation. SQL*Fornis Designers Reference, 6.0 edition, Novemnber,1988.

13. Oracle Corporationi. Oraclc Call Interfaces (OCIs), 6.0 edition, September,1989.

14. Oracle Corporotion. Oracle RDBMS Database Admini.strator's Guide, 6.0 edition,
November,1988.

15. David Pepin. ORACLE Programmers Guidc. QUE Corporation, 11711 N. COL-
LEGE Ave., Carmel, IN ,16032, 1989.

16. Darrell A, Quick. Developing map-based graphics for the theater w--ir exercise. Mas-
ter's thesis, AFIT/GCS/ENG /q81)-16, School of Engineering, Air Force Institute of
Technology (AU), Wright l'alterson AF1, Oh, 1988.

17. Relational Technology. 4 GL Applicalion Development Guide, 1987.

18. Relational Technology. Ingre! A BI"/11GL, 6.0 edition, 1988.

19. Jonathan Sayles. SQI. Spokn li(re. QE) Information Sciences. Wellesley, Mess..
1989.

1IB-1

20. K. R. Wilcox. Extending the user interface for the theatei wvar exercise. Master's
thesis, AFIT/G CS/EN C/88D-24, School of Engineering, Air Force Instituttc of Tech-
nology (AU), Wright Patterson AFB3, Oh, 1988.

Vita

First Lieutenant Adnan Altunisik was born on April 28, 1965, in Ankara, Turkey.

Upon graduation from Kuleli Military High School, he entered the Turkish Air Force

Academy in Istanbul, Turkey. In August 1987, he received his Bachelor of Science degree

in Electrical Engineering as well as his commission as a Second Lieutenant in the Turkish

Air Force. Between September 198' and May 1988, he attended the Turkish Air Force

Communications School in Izmir, Turkey. His first duty assignment in May 1988 was as

a Communications Officer in the Air Force Training Headquarters in Izmir, Turkey. In

September 1988, he was assigned to the Air Force Techical Schools as the Commander of

Electronic Maintenance Unit. lie entered the School of Engineering, Air Force Institute

of Technology in May 1989. After graduation in March (1991). First Lieutenant Altunisik

will be assigned to the Turkish Air Force Headquarters, Ankara, Turkey.

Permanent addre, s: Abdulhak llanit Cad.
#851/A
M amak, Ankara 06,70
TURK EY

VITA- I

